Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Akt3 is a privileged first responder in isozyme-specific electrophile response

Abstract

Isozyme-specific post-translational regulation fine tunes signaling events. However, redundancy in sequence or activity renders links between isozyme-specific modifications and downstream functions uncertain. Methods to study this phenomenon are underdeveloped. Here we use a redox-targeting screen to reveal that Akt3 is a first-responding isozyme sensing native electrophilic lipids. Electrophile modification of Akt3 modulated downstream pathway responses in cells and Danio rerio (zebrafish) and markedly differed from Akt2-specific oxidative regulation. Digest MS sequencing identified Akt3 C119 as the privileged cysteine that senses 4-hydroxynonenal. A C119S Akt3 mutant was hypomorphic for all downstream phenotypes shown by wild-type Akt3. This study documents isozyme-specific and chemical redox signal–personalized physiological responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Akt3 is a first-responding isozyme to reactive native lipid signals.
Figure 2: C119 of Akt3 is the unique HNE-sensing residue.
Figure 3: Lipid signals downregulate Akt3 kinase activity selectively.
Figure 4: Akt3(C119)-specific HNEylation upregulates transcriptional activities of tumor suppressor genes.

Similar content being viewed by others

References

  1. Lanning, B.R. et al. A road map to evaluate the proteome-wide selectivity of covalent kinase inhibitors. Nat. Chem. Biol. 10, 760–767 (2014).

    Article  CAS  Google Scholar 

  2. Cohen, P. Protein kinases—the major drug targets of the twenty-first century? Nat. Rev. Drug Discov. 1, 309–315 (2002).

    Article  CAS  Google Scholar 

  3. Dar, A.C. & Shokat, K.M. The evolution of protein kinase inhibitors from antagonists to agonists of cellular signaling. Annu. Rev. Biochem. 80, 769–795 (2011).

    Article  CAS  Google Scholar 

  4. Gonzalez, E. & McGraw, T.E. The Akt kinases: isoform specificity in metabolism and cancer. Cell Cycle 8, 2502–2508 (2009).

    Article  CAS  Google Scholar 

  5. Mochly-Rosen, D. & Gordon, A.S. Anchoring proteins for protein kinase C: a means for isozyme selectivity. FASEB J. 12, 35–42 (1998).

    Article  CAS  Google Scholar 

  6. Tsai, Y.H., Essig, S., James, J.R., Lang, K. & Chin, J.W. Selective, rapid and optically switchable regulation of protein function in live mammalian cells. Nat. Chem. 7, 554–561 (2015).

    Article  CAS  Google Scholar 

  7. Long, M.J., Poganik, J.R. & Aye, Y. On-demand targeting: investigating biology with proximity-directed chemistry. J. Am. Chem. Soc. 138, 3610–3622 (2016).

    Article  CAS  Google Scholar 

  8. Gunning, P., Weinberger, R., Jeffrey, P. & Hardeman, E. Isoform sorting and the creation of intracellular compartments. Annu. Rev. Cell Dev. Biol. 14, 339–372 (1998).

    Article  CAS  Google Scholar 

  9. Mann, M. & Jensen, O.N. Proteomic analysis of post-translational modifications. Nat. Biotechnol. 21, 255–261 (2003).

    Article  CAS  Google Scholar 

  10. Parvez, S. et al. Substoichiometric hydroxynonenylation of a single protein recapitulates whole-cell-stimulated antioxidant response. J. Am. Chem. Soc. 137, 10–13 (2015).

    Article  CAS  Google Scholar 

  11. Lin, H.Y., Haegele, J.A., Disare, M.T., Lin, Q. & Aye, Y. A generalizable platform for interrogating target- and signal-specific consequences of electrophilic modifications in redox-dependent cell signaling. J. Am. Chem. Soc. 137, 6232–6244 (2015).

    Article  CAS  Google Scholar 

  12. Schopfer, F.J., Cipollina, C. & Freeman, B.A. Formation and signaling actions of electrophilic lipids. Chem. Rev. 111, 5997–6021 (2011).

    Article  CAS  Google Scholar 

  13. Wang, C., Weerapana, E., Blewett, M.M. & Cravatt, B.F. A chemoproteomic platform to quantitatively map targets of lipid-derived electrophiles. Nat. Methods 11, 79–85 (2014).

    Article  Google Scholar 

  14. Jacobs, A.T. & Marnett, L.J. Systems analysis of protein modification and cellular responses induced by electrophile stress. Acc. Chem. Res. 43, 673–683 (2010).

    Article  CAS  Google Scholar 

  15. Parvez, S. et al. T-REX On-demand redox targeting in live cells. Nat. Protoc. 11, 2328–2356 (2016).

    Article  CAS  Google Scholar 

  16. Fang, X. et al. Temporally controlled targeting of 4-hydroxynonenal to specific proteins in living cells. J. Am. Chem. Soc. 135, 14496–14499 (2013).

    Article  CAS  Google Scholar 

  17. Manning, B.D. & Cantley, L.C. AKT/PKB signaling: navigating downstream. Cell 129, 1261–1274 (2007).

    Article  CAS  Google Scholar 

  18. Dummler, B. & Hemmings, B.A. Physiological roles of PKB/Akt isoforms in development and disease. Biochem. Soc. Trans. 35, 231–235 (2007).

    Article  CAS  Google Scholar 

  19. Wani, R. et al. Isoform-specific regulation of Akt by PDGF-induced reactive oxygen species. Proc. Natl. Acad. Sci. USA 108, 10550–10555 (2011).

    Article  CAS  Google Scholar 

  20. Tschopp, O. et al. Essential role of protein kinase B-γ (PKB-γ/Akt3) in postnatal brain development but not in glucose homeostasis. Development 132, 2943–2954 (2005).

    Article  CAS  Google Scholar 

  21. Poduri, A. et al. Somatic activation of AKT3 causes hemispheric developmental brain malformations. Neuron 74, 41–48 (2012).

    Article  CAS  Google Scholar 

  22. Chen, C.T., Green, J.T., Orr, S.K. & Bazinet, R.P. Regulation of brain polyunsaturated fatty acid uptake and turnover. Prostaglandins Leukot. Essent. Fatty Acids 79, 85–91 (2008).

    Article  CAS  Google Scholar 

  23. Akbar, M., Calderon, F., Wen, Z. & Kim, H.-Y. Docosahexaenoic acid: a positive modulator of Akt signaling in neuronal survival. Proc. Natl. Acad. Sci. USA 102, 10858–10863 (2005).

    Article  CAS  Google Scholar 

  24. Gao, X. & Zhang, J. Spatiotemporal analysis of differential Akt regulation in plasma membrane microdomains. Mol. Biol. Cell 19, 4366–4373 (2008).

    Article  CAS  Google Scholar 

  25. Zhou, B.P. et al. HER-2/neu blocks tumor necrosis factor-induced apoptosis via the Akt/NF-κB pathway. J. Biol. Chem. 275, 8027–8031 (2000).

    Article  CAS  Google Scholar 

  26. Dudek, H. et al. Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 275, 661–665 (1997).

    Article  CAS  Google Scholar 

  27. Papa, A. et al. Cancer-associated PTEN mutants act in a dominant-negative manner to suppress PTEN protein function. Cell 157, 595–610 (2014).

    Article  CAS  Google Scholar 

  28. Kardash, E., Bandemer, J. & Raz, E. Imaging protein activity in live embryos using fluorescence resonance energy transfer biosensors. Nat. Protoc. 6, 1835–1846 (2011).

    Article  CAS  Google Scholar 

  29. Long, M.J.C. & Aye, Y. The die is cast: precision electrophilic modifications contribute to cellular decision making. Chem. Res. Toxicol. 29, 1575–1582 (2016).

    Article  CAS  Google Scholar 

  30. Liew, W.C. & Orbán, L. Zebrafish sex: a complicated affair. Brief. Funct. Genomics 13, 172–187 (2014).

    Article  Google Scholar 

  31. Kolb, H.C., Finn, M.G. & Sharpless, K.B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Edn Engl. 40, 2004–2021 (2001).

    Article  CAS  Google Scholar 

  32. Yang, Y., Thannhauser, T.W., Li, L. & Zhang, S. Development of an integrated approach for evaluation of 2-D gel image analysis: impact of multiple proteins in single spots on comparative proteomics in conventional 2-D gel/MALDI workflow. Electrophoresis 28, 2080–2094 (2007).

    Article  CAS  Google Scholar 

  33. Yang, Y. et al. Evaluation of different multidimensional LC-MS/MS pipelines for isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis of potato tubers in response to cold storage. J. Proteome Res. 10, 4647–4660 (2011).

    Article  CAS  Google Scholar 

  34. Hochrainer, K., Racchumi, G., Zhang, S., Iadecola, C. & Anrather, J. Monoubiquitination of nuclear RelA negatively regulates NF-κB activity independent of proteasomal degradation. Cell. Mol. Life Sci. 69, 2057–2073 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Fetcho and B. Miller (Cornell University) for scientific and technical guidance on zebrafish studies; J. Zhang (University of California, San Diego) and Johns Hopkins University for providing AktAR reporter plasmid; J. Poganik for his initial contributions to zebrafish studies; the zebrafish husbandry and microinjection/imaging facility (NIH R01 NS026593, J. Fetcho (Cornell University)), the Cornell NMR facility (NSF MRI: CHE-1531632, Y.A.), the Cornell Imaging Center (NIH 1S10RR025502, R.M. Williams (Cornell University)) and the Cornell proteomics and MS facility (NIH 1S10RR025449-01, S.Z.) for instrumentation. Supported by NIH New Innovator (1DP2GM114850), Beckman Young Investigator, NSF CAREER (CHE-1351400), Burroughs Wellcome CRTG and Sloan Fellowship programs (to Y.A.); HHMI predoctoral fellowship (59108350 to S.P.) and a Hill undergraduate fellowship (to S.L.S.) for student support.

Author information

Authors and Affiliations

Authors

Contributions

M.J.C.L., S.P. and Y.A. designed the experiments. M.J.C.L. performed in vivo experiments in fish embryos. S.P. and M.J.C.L. performed cell-based experiments and collected the biochemical data from fish samples. Y.Z. and Y.W. performed chemical synthesis. S.L.S. assisted M.J.C.L. and S.P. with gene cloning and protein purification. S.Z. assisted in LC-MS/MS data analysis. M.J.C.L., S.P. and Y.A. analyzed and interpreted the data. Y.A. wrote the paper with editing contributions from M.J.C.L. and S.P.

Corresponding author

Correspondence to Yimon Aye.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–4 and Supplementary Figures 1–18. (PDF 4926 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, M., Parvez, S., Zhao, Y. et al. Akt3 is a privileged first responder in isozyme-specific electrophile response. Nat Chem Biol 13, 333–338 (2017). https://doi.org/10.1038/nchembio.2284

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2284

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing