Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

MraY–antibiotic complex reveals details of tunicamycin mode of action

Abstract

The rapid increase of antibiotic resistance has created an urgent need to develop novel antimicrobial agents. Here we describe the crystal structure of the promising bacterial target phospho-N-acetylmuramoyl–pentapeptide translocase (MraY) in complex with the nucleoside antibiotic tunicamycin. The structure not only reveals the mode of action of several related natural-product antibiotics but also gives an indication on the binding mode of the MraY UDP–MurNAc–pentapeptide and undecaprenyl-phosphate substrates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The MraY tunicamycin complex structure.
Figure 2: Comparison of tunicamycin and MD2 binding.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Boyle, D.S. & Donachie, W.D. J. Bacteriol. 180, 6429–6432 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Anderson, J.S., Matsuhashi, M., Haskin, M.A. & Strominger, J.L. Proc. Natl. Acad. Sci. USA 53, 881–889 (1965).

    Article  CAS  Google Scholar 

  3. Struve, W.G. & Neuhaus, F.C. Biochem. Biophys. Res. Commun. 18, 6–12 (1965).

    Article  CAS  Google Scholar 

  4. Lehrman, M.A. Glycobiology 4, 768–771 (1994).

    Article  CAS  Google Scholar 

  5. Lehrman, M.A. Glycobiology 1, 553–562 (1991).

    Article  CAS  Google Scholar 

  6. Anderson, M.S., Eveland, S.S. & Price, N.P. FEMS Microbiol. Lett. 191, 169–175 (2000).

    Article  CAS  Google Scholar 

  7. Heifetz, A. & Elbein, A.D. J. Biol. Chem. 252, 3057–3063 (1977).

    CAS  PubMed  Google Scholar 

  8. Dini, C. Curr. Top. Med. Chem. 5, 1221–1236 (2005).

    Article  CAS  Google Scholar 

  9. Tkacz, J.S. & Lampen, O. Biochem. Biophys. Res. Commun. 65, 248–257 (1975).

    Article  CAS  Google Scholar 

  10. Tamura, G., Sasaki, T., Matsuhashi, M., Takatsuki, A. & Yamasaki, M. Agric. Biol. Chem. 40, 447–449 (1976).

    CAS  Google Scholar 

  11. Schwarz, R.T. & Datema, R. Trends Biochem. Sci. 5, 65–67 (1980).

    Article  CAS  Google Scholar 

  12. Brandish, P.E. et al. Antimicrob. Agents Chemother. 40, 1640–1644 (1996).

    Article  CAS  Google Scholar 

  13. Keller, R.K., Adair, W.L. Jr. & Ness, G.C. J. Biol. Chem. 254, 9966–9969 (1979).

    CAS  PubMed  Google Scholar 

  14. Chung, B.C. et al. Science 341, 1012–1016 (2013).

    Article  CAS  Google Scholar 

  15. Chung, B.C. et al. Nature 533, 557–560 (2016).

    Article  CAS  Google Scholar 

  16. Shapiro, A.B., Jahić, H., Gao, N., Hajec, L. & Rivin, O. J. Biomol. Screen. 17, 662–672 (2012).

    Article  CAS  Google Scholar 

  17. Al-Dabbagh, B. et al. Biochemistry 47, 8919–8928 (2008).

    Article  CAS  Google Scholar 

  18. Al-Dabbagh, B. et al. Biochimie 127, 249–257 (2016).

    Article  CAS  Google Scholar 

  19. Suami, T., Sasai, H., Matsuno, K. & Suzuki, N. Carbohydr. Res. 143, 85–96 (1985).

    Article  CAS  Google Scholar 

  20. Myers, A.G., Gin, D.Y. & Rogers, D.H. J. Am. Chem. Soc. 116, 4697–4718 (1994).

    Article  CAS  Google Scholar 

  21. Li, J. & Yu, B. Angew. Chem. Int. Edn Engl. 54, 6618–6621 (2015).

    Article  CAS  Google Scholar 

  22. Wyszynski, F.J. et al. Nat. Chem. 4, 539–546 (2012).

    Article  CAS  Google Scholar 

  23. Backmark, A.E. et al. Protein Sci. 22, 1124–1132 (2013).

    Article  CAS  Google Scholar 

  24. Studier, F.W. Protein Expr. Purif. 41, 207–234 (2005).

    Article  CAS  Google Scholar 

  25. Bowler, M.W. et al. Acta Crystallogr. D Biol. Crystallogr. 66, 855–864 (2010).

    Article  CAS  Google Scholar 

  26. Kabsch, W. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    Article  CAS  Google Scholar 

  27. McCoy, A.J. et al. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  28. Cowtan, K., Zhang, K.Y.J. & Main, P. International Tables for Crystallography, Crystallography of Biological Macromolecules (Kluwer Academic Publishers, 2001).

  29. Cowtan, K. Acta Crystallogr. D Biol. Crystallogr. 66, 470–478 (2010).

    Article  CAS  Google Scholar 

  30. Cowtan, K. Acta Crystallogr. D Biol. Crystallogr. 64, 83–89 (2008).

    Article  CAS  Google Scholar 

  31. de La Fortelle, E. & Bricogne, G. Methods Enzymol. 276, 472–494 (1997).

    Article  CAS  Google Scholar 

  32. Emsley, P. & Cowtan, K. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  33. Gasteiger, J., Rudolph, C. & Sadowski, J. Tetrahedron Comp. Method. 3, 537–547 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Shapiro and J. Bernström for assistance with activity measurements, beamline scientists at ESRF (Grenoble, France) and Diamond Light Source (Didcot, UK) for assistance during data collection, and members of Global Phasing Ltd. for help with STARANISO. We are also grateful to I. Moraes at the Membrane Protein Laboratory, Diamond for providing beamtime and assistance. This work was supported by the European Union under the programme FP7-PEOPLE-2011-ITN NanoMem, project number 317079 (M.E.) and the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie agreement No 637295, X-probe (M.E.).

Author information

Authors and Affiliations

Authors

Contributions

A.S. and M.E. designed the study, J.K.H. established purification and crystallized the protein, J.H. collected and analyzed the activity data, J.K.H. and P.J. collected the crystallographic data, P.J. solved and built the initial model, P.J. and G.B. refined the structure, H.C. performed the docking studies, J.K.H., G.B., M.E. and P.J. prepared the manuscript with input from all authors.

Corresponding authors

Correspondence to Margareta Ek or Patrik Johansson.

Ethics declarations

Competing interests

J.H., H.C., A.S., M.E. and P.J. are employees of AstraZeneca.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–8 and Supplementary Tables 1 and 2. (PDF 2748 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hakulinen, J., Hering, J., Brändén, G. et al. MraY–antibiotic complex reveals details of tunicamycin mode of action. Nat Chem Biol 13, 265–267 (2017). https://doi.org/10.1038/nchembio.2270

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2270

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing