Biomimetic spinning of artificial spider silk from a chimeric minispidroin

Abstract

Herein we present a chimeric recombinant spider silk protein (spidroin) whose aqueous solubility equals that of native spider silk dope and a spinning device that is based solely on aqueous buffers, shear forces and lowered pH. The process recapitulates the complex molecular mechanisms that dictate native spider silk spinning and is highly efficient; spidroin from one liter of bacterial shake-flask culture is enough to spin a kilometer of the hitherto toughest as-spun artificial spider silk fiber.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Biomimetic spinning of artificial spider silk.
Figure 2: pH-dependent assembly and spinning of NT2RepCT.

Accession codes

Accessions

European Nucleotide Archive

NCBI Reference Sequence

References

  1. 1

    Askarieh, G. et al. Nature 465, 236–238 (2010).

    CAS  Article  Google Scholar 

  2. 2

    Hagn, F. et al. Nature 465, 239–242 (2010).

    CAS  Article  Google Scholar 

  3. 3

    Zhang, H. et al. Prep. Biochem. Biotechnol. 46, 552–558 (2016).

    CAS  Article  Google Scholar 

  4. 4

    Copeland, C.G., Bell, B.E., Christensen, C.D. & Lewis, R.V. ACS Biomater. Sci. Eng. 1, 577–584 (2015).

    CAS  Article  Google Scholar 

  5. 5

    Lin, Z., Deng, Q., Liu, X.Y. & Yang, D. Adv. Mater. 25, 1216–1220 (2013).

    CAS  Article  Google Scholar 

  6. 6

    Adrianos, S.L. et al. Biomacromolecules 14, 1751–1760 (2013).

    CAS  Article  Google Scholar 

  7. 7

    Xu, L., Rainey, J.K., Meng, Q. & Liu, X.Q. PLoS One 7, e50227 (2012).

    CAS  Article  Google Scholar 

  8. 8

    Albertson, A.E., Teulé, F., Weber, W., Yarger, J.L. & Lewis, R.V. J. Mech. Behav. Biomed. Mater. 29, 225–234 (2014).

    CAS  Article  Google Scholar 

  9. 9

    Xia, X.X. et al. Proc. Natl. Acad. Sci. USA 107, 14059–14063 (2010).

    CAS  Article  Google Scholar 

  10. 10

    Teulé, F., Furin, W.A., Cooper, A.R., Duncan, J.R. & Lewis, R.V. J. Mater. Sci. 42, 8974–8985 (2007).

    Article  Google Scholar 

  11. 11

    Stark, M. et al. Biomacromolecules 8, 1695–1701 (2007).

    CAS  Article  Google Scholar 

  12. 12

    Rammensee, S., Slotta, U., Scheibel, T. & Bausch, A.R. Proc. Natl. Acad. Sci. USA 105, 6590–6595 (2008).

    CAS  Article  Google Scholar 

  13. 13

    Heidebrecht, A. et al. Adv. Mater. 27, 2189–2194 (2015).

    CAS  Article  Google Scholar 

  14. 14

    Hijirida, D.H. et al. Biophys. J. 71, 3442–3447 (1996).

    CAS  Article  Google Scholar 

  15. 15

    Andersson, M. et al. PLoS Biol. 12, e1001921 (2014).

    Article  Google Scholar 

  16. 16

    Kronqvist, N. et al. Nat. Commun. 5, 3254 (2014).

    Article  Google Scholar 

  17. 17

    Gaines, W.A., Sehorn, M.G. & Marcotte, W.R. Jr. J. Biol. Chem. 285, 40745–40753 (2010).

    CAS  Article  Google Scholar 

  18. 18

    Rising, A. & Johansson, J. Nat. Chem. Biol. 11, 309–315 (2015).

    CAS  Article  Google Scholar 

  19. 19

    Gauthier, M., Leclerc, J., Lefèvre, T., Gagné, S.M. & Auger, M. Biomacromolecules 15, 4447–4454 (2014).

    CAS  Article  Google Scholar 

  20. 20

    Vollrath, F. & Knight, D.P. Int. J. Biol. Macromol. 24, 243–249 (1999).

    CAS  Article  Google Scholar 

  21. 21

    Giesa, T., Perry, C.C. & Buehler, M.J. Biomacromolecules 17, 427–436 (2016).

    CAS  Article  Google Scholar 

  22. 22

    Lin, Z., Huang, W., Zhang, J., Fan, J.S. & Yang, D. Proc. Natl. Acad. Sci. USA 106, 8906–8911 (2009).

    CAS  Article  Google Scholar 

  23. 23

    Shen, C.L. & Murphy, R.M. Biophys. J. 69, 640–651 (1995).

    CAS  Article  Google Scholar 

  24. 24

    Lefèvre, T., Boudreault, S., Cloutier, C. & Pézolet, M. Biomacromolecules 9, 2399–2407 (2008).

    Article  Google Scholar 

  25. 25

    Jiang, P. et al. Sci. Rep. 4, 7326 (2014).

    CAS  Article  Google Scholar 

  26. 26

    Porter, D., Guan, J. & Vollrath, F. Adv. Mater. 25, 1275–1279 (2013).

    CAS  Article  Google Scholar 

  27. 27

    Rising, A., Hjälm, G., Engström, W. & Johansson, J. Biomacromolecules 7, 3120–3124 (2006).

    CAS  Article  Google Scholar 

  28. 28

    Lefèvre, T., Rousseau, M.E. & Pézolet, M. Biophys. J. 92, 2885–2895 (2007).

    Article  Google Scholar 

  29. 29

    Huang, W. et al. Macromolecules 47, 8107–8114 (2014).

    CAS  Article  Google Scholar 

  30. 30

    Ling, S., Qi, Z., Knight, D.P., Shao, Z. & Chen, X. Biomacromolecules 12, 3344–3349 (2011).

    CAS  Article  Google Scholar 

  31. 31

    Larson, J.L., Ko, E. & Miranker, A.D. Protein Sci. 9, 427–431 (2000).

    CAS  Article  Google Scholar 

  32. 32

    Strohalm, M., Kavan, D., Novák, P., Volný, M. & Havlícek, V. Anal. Chem. 82, 4648–4651 (2010).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank L. Holm, the Swedish University of Agricultural Sciences for help with photography, as well as S. Takeuchi and A. Hsiao at the University of Tokyo for introduction into the use of pulled glass capillaries for fiber formation. We also thank F. Palm, Uppsala University, for lending us a microelectrode puller. Q.J. was supported by a stipend from the Chinese Scholarship Council. The Swedish Research Council (grants no. 2014-2408 and 2014-10371 to A.R. and J.J.), CIMED (to J.J.) and FORMAS (2015-629 to A.R.) supported this work.

Author information

Affiliations

Authors

Contributions

M.A., Q.J., A.A., X.-Y.L., M.L., and P.P. performed the experiments; A.R., J.J., G.R.P., Q.M., C.V.R., M.T., H.H. supplied equipment and expertise; A.R. and J.J. conceived and designed the study; M.A., A.R. and J.J. wrote the manuscript. All authors edited the manuscript.

Corresponding authors

Correspondence to Jan Johansson or Anna Rising.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Andersson, M., Jia, Q., Abella, A. et al. Biomimetic spinning of artificial spider silk from a chimeric minispidroin. Nat Chem Biol 13, 262–264 (2017). https://doi.org/10.1038/nchembio.2269

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing