Abstract
Herein we present a chimeric recombinant spider silk protein (spidroin) whose aqueous solubility equals that of native spider silk dope and a spinning device that is based solely on aqueous buffers, shear forces and lowered pH. The process recapitulates the complex molecular mechanisms that dictate native spider silk spinning and is highly efficient; spidroin from one liter of bacterial shake-flask culture is enough to spin a kilometer of the hitherto toughest as-spun artificial spider silk fiber.
This is a preview of subscription content
Access options
Subscribe to Nature+
Get immediate online access to the entire Nature family of 50+ journals
$29.99
monthly
Subscribe to Journal
Get full journal access for 1 year
$119.00
only $9.92 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.


References
Askarieh, G. et al. Nature 465, 236–238 (2010).
Hagn, F. et al. Nature 465, 239–242 (2010).
Zhang, H. et al. Prep. Biochem. Biotechnol. 46, 552–558 (2016).
Copeland, C.G., Bell, B.E., Christensen, C.D. & Lewis, R.V. ACS Biomater. Sci. Eng. 1, 577–584 (2015).
Lin, Z., Deng, Q., Liu, X.Y. & Yang, D. Adv. Mater. 25, 1216–1220 (2013).
Adrianos, S.L. et al. Biomacromolecules 14, 1751–1760 (2013).
Xu, L., Rainey, J.K., Meng, Q. & Liu, X.Q. PLoS One 7, e50227 (2012).
Albertson, A.E., Teulé, F., Weber, W., Yarger, J.L. & Lewis, R.V. J. Mech. Behav. Biomed. Mater. 29, 225–234 (2014).
Xia, X.X. et al. Proc. Natl. Acad. Sci. USA 107, 14059–14063 (2010).
Teulé, F., Furin, W.A., Cooper, A.R., Duncan, J.R. & Lewis, R.V. J. Mater. Sci. 42, 8974–8985 (2007).
Stark, M. et al. Biomacromolecules 8, 1695–1701 (2007).
Rammensee, S., Slotta, U., Scheibel, T. & Bausch, A.R. Proc. Natl. Acad. Sci. USA 105, 6590–6595 (2008).
Heidebrecht, A. et al. Adv. Mater. 27, 2189–2194 (2015).
Hijirida, D.H. et al. Biophys. J. 71, 3442–3447 (1996).
Andersson, M. et al. PLoS Biol. 12, e1001921 (2014).
Kronqvist, N. et al. Nat. Commun. 5, 3254 (2014).
Gaines, W.A., Sehorn, M.G. & Marcotte, W.R. Jr. J. Biol. Chem. 285, 40745–40753 (2010).
Rising, A. & Johansson, J. Nat. Chem. Biol. 11, 309–315 (2015).
Gauthier, M., Leclerc, J., Lefèvre, T., Gagné, S.M. & Auger, M. Biomacromolecules 15, 4447–4454 (2014).
Vollrath, F. & Knight, D.P. Int. J. Biol. Macromol. 24, 243–249 (1999).
Giesa, T., Perry, C.C. & Buehler, M.J. Biomacromolecules 17, 427–436 (2016).
Lin, Z., Huang, W., Zhang, J., Fan, J.S. & Yang, D. Proc. Natl. Acad. Sci. USA 106, 8906–8911 (2009).
Shen, C.L. & Murphy, R.M. Biophys. J. 69, 640–651 (1995).
Lefèvre, T., Boudreault, S., Cloutier, C. & Pézolet, M. Biomacromolecules 9, 2399–2407 (2008).
Jiang, P. et al. Sci. Rep. 4, 7326 (2014).
Porter, D., Guan, J. & Vollrath, F. Adv. Mater. 25, 1275–1279 (2013).
Rising, A., Hjälm, G., Engström, W. & Johansson, J. Biomacromolecules 7, 3120–3124 (2006).
Lefèvre, T., Rousseau, M.E. & Pézolet, M. Biophys. J. 92, 2885–2895 (2007).
Huang, W. et al. Macromolecules 47, 8107–8114 (2014).
Ling, S., Qi, Z., Knight, D.P., Shao, Z. & Chen, X. Biomacromolecules 12, 3344–3349 (2011).
Larson, J.L., Ko, E. & Miranker, A.D. Protein Sci. 9, 427–431 (2000).
Strohalm, M., Kavan, D., Novák, P., Volný, M. & Havlícek, V. Anal. Chem. 82, 4648–4651 (2010).
Acknowledgements
We thank L. Holm, the Swedish University of Agricultural Sciences for help with photography, as well as S. Takeuchi and A. Hsiao at the University of Tokyo for introduction into the use of pulled glass capillaries for fiber formation. We also thank F. Palm, Uppsala University, for lending us a microelectrode puller. Q.J. was supported by a stipend from the Chinese Scholarship Council. The Swedish Research Council (grants no. 2014-2408 and 2014-10371 to A.R. and J.J.), CIMED (to J.J.) and FORMAS (2015-629 to A.R.) supported this work.
Author information
Authors and Affiliations
Contributions
M.A., Q.J., A.A., X.-Y.L., M.L., and P.P. performed the experiments; A.R., J.J., G.R.P., Q.M., C.V.R., M.T., H.H. supplied equipment and expertise; A.R. and J.J. conceived and designed the study; M.A., A.R. and J.J. wrote the manuscript. All authors edited the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Text and Figures
Supplementary Results, Supplementary Tables 1 and 2 and Supplementary Figures 1–7. (PDF 819 kb)
Supplementary Table
Source data for Supplementary Figure 7. (XLSX 135 kb)
41589_2017_BFnchembio2269_MOESM590_ESM.mov
Spinning NT2RepCT in a biomimetic spinning device. Fibers form instantaneously as the highly concentrated spinning dope hits the pH 5.0 aqueous buffer. (MOV 23001 kb)
Source data
Rights and permissions
About this article
Cite this article
Andersson, M., Jia, Q., Abella, A. et al. Biomimetic spinning of artificial spider silk from a chimeric minispidroin. Nat Chem Biol 13, 262–264 (2017). https://doi.org/10.1038/nchembio.2269
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nchembio.2269
Further reading
-
Artificial and natural silk materials have high mechanical property variability regardless of sample size
Scientific Reports (2022)
-
Biological composite fibers with extraordinary mechanical strength and toughness mediated by multiple intermolecular interacting networks
Nano Research (2022)
-
From small to large-scale: a review of recombinant spider silk and collagen bioproduction
Discover Materials (2022)
-
Tyrosine residues mediate supercontraction in biomimetic spider silk
Communications Materials (2021)
-
Aqueous spinning system with a citrate buffer for highly extensible silk fibers
Polymer Journal (2021)