Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mutations along a TET2 active site scaffold stall oxidation at 5-hydroxymethylcytosine

Abstract

Ten-eleven translocation (TET) enzymes catalyze stepwise oxidation of 5-methylcytosine (mC) to yield 5-hydroxymethylcytosine (hmC) and the rarer bases 5-formylcytosine (fC) and 5-carboxylcytosine (caC). Stepwise oxidation obscures how each individual base forms and functions in epigenetic regulation, and prompts the question of whether TET enzymes primarily serve to generate hmC or are adapted to produce fC and caC as well. By mutating a single, conserved active site residue in human TET2, Thr1372, we uncovered enzyme variants that permit oxidation to hmC but largely eliminate fC and caC. Biochemical analyses, combined with molecular dynamics simulations, elucidated an active site scaffold that is required for wild-type (WT) stepwise oxidation and that, when perturbed, explains the mutants' hmC-stalling phenotype. Our results suggest that the TET2 active site is shaped to enable higher-order oxidation and provide the first TET variants that could be used to probe the biological functions of hmC separately from fC and caC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Thr1372 and Val1900 were targeted for their potential role in TET2-catalyzed cytosine oxidation.
Figure 2: Screen for mutant activity.
Figure 3: Molecular dynamics modeling reveals a critical Thr1372–Tyr1902 scaffold that is disrupted in the low-efficiency and hmC-dominant mutants.
Figure 4: Biochemical characterization of purified hTET2 mutants.
Figure 5: T1372A/Y1902F double mutant rescues the hmC-dominant phenotype by configuring active site interactions.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Tahiliani, M. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930–935 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kriaucionis, S. & Heintz, N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324, 929–930 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ito, S. et al. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466, 1129–1133 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pfaffeneder, T. et al. The discovery of 5-formylcytosine in embryonic stem cell DNA. Angew. Chem. Int. Edn Engl. 50, 7008–7012 (2011).

    Article  CAS  Google Scholar 

  5. He, Y.F. et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333, 1303–1307 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ito, S. et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333, 1300–1303 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kohli, R.M. & Zhang, Y. TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502, 472–479 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bachman, M. et al. 5-Hydroxymethylcytosine is a predominantly stable DNA modification. Nat. Chem. 6, 1049–1055 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bachman, M. et al. 5-Formylcytosine can be a stable DNA modification in mammals. Nat. Chem. Biol. 11, 555–557 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wu, H. & Zhang, Y. Charting oxidized methylcytosines at base resolution. Nat. Struct. Mol. Biol. 22, 656–661 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Liu, M.Y., DeNizio, J.E., Schutsky, E.K. & Kohli, R.M. The expanding scope and impact of epigenetic cytosine modifications. Curr. Opin. Chem. Biol. 33, 67–73 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zheng, G., Fu, Y. & He, C. Nucleic acid oxidation in DNA damage repair and epigenetics. Chem. Rev. 114, 4602–4620 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hu, L. et al. Structural insight into substrate preference for TET-mediated oxidation. Nature 527, 118–122 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Hu, L. et al. Crystal structure of TET2-DNA complex: insight into TET-mediated 5mC oxidation. Cell 155, 1545–1555 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Lu, J. et al. A computational investigation on the substrate preference of ten-eleven-translocation 2 (TET2). Phys. Chem. Chem. Phys. 18, 4728–4738 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Maiti, A. & Drohat, A.C. Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. J. Biol. Chem. 286, 35334–35338 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Weber, A.R. et al. Biochemical reconstitution of TET1-TDG-BER-dependent active DNA demethylation reveals a highly coordinated mechanism. Nat. Commun. 7, 10806 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Iurlaro, M. et al. A screen for hydroxymethylcytosine and formylcytosine binding proteins suggests functions in transcription and chromatin regulation. Genome Biol. 14, R119 (2013).

    PubMed  PubMed Central  Google Scholar 

  19. Spruijt, C.G. et al. Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell 152, 1146–1159 (2013).

    CAS  PubMed  Google Scholar 

  20. Crawford, D.J. et al. Tet2 catalyzes stepwise 5-methylcytosine oxidation by an iterative and de novo mechanism. J. Am. Chem. Soc. 138, 730–733 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fang, D., Lord, R.L. & Cisneros, G.A. Ab initio QM/MM calculations show an intersystem crossing in the hydrogen abstraction step in dealkylation catalyzed by AlkB. J. Phys. Chem. B 117, 6410–6420 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Fang, D. & Cisneros, G.A. Alternative pathway for the reaction catalyzed by DNA dealkylase AlkB from ab initio QM/MM calculations. J. Chem. Theory Comput. 10, 5136–5148 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hashimoto, H. et al. Structure of Naegleria Tet-like dioxygenase (NgTet1) in complexes with a reaction intermediate 5-hydroxymethylcytosine DNA. Nucleic Acids Res. 43, 10713–10721 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Abdel-Wahab, O. et al. Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. Blood 114, 144–147 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Scourzic, L., Mouly, E. & Bernard, O.A. TET proteins and the control of cytosine demethylation in cancer. Genome Med. 7, 9 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Cliffe, L.J. et al. JBP1 and JBP2 are two distinct thymidine hydroxylases involved in J biosynthesis in genomic DNA of African trypanosomes. Nucleic Acids Res. 37, 1452–1462 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bullard, W., Lopes da Rosa-Spiegler, J., Liu, S., Wang, Y. & Sabatini, R. Identification of the glucosyltransferase that converts hydroxymethyluracil to base J in the trypanosomatid genome. J. Biol. Chem. 289, 20273–20282 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pei, J., Kim, B.H. & Grishin, N.V. PROMALS3D: a tool for multiple protein sequence and structure alignments. Nucleic Acids Res. 36, 2295–2300 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hu, X. et al. Tet and TDG mediate DNA demethylation essential for mesenchymal-to-epithelial transition in somatic cell reprogramming. Cell Stem Cell 14, 512–522 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Lian, C.G. et al. Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma. Cell 150, 1135–1146 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Neri, F. et al. TET1 is a tumour suppressor that inhibits colon cancer growth by derepressing inhibitors of the WNT pathway. Oncogene 34, 4168–4176 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Gu, T.P. et al. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature 477, 606–610 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Liu, M.Y., DeNizio, J.E. & Kohli, R.M. Quantification of oxidized 5-methylcytosine bases and TET enzyme activity. Methods Enzymol. 573, 365–385 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen, V.B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Schafmeister, C.E.A.F., Ross, W.S. & Romanovski, V. The Leap Module of AMBER (School of Pharmacy, University of California, San Francisco, 1995).

  36. Case, D.A. et al. The Amber biomolecular simulation programs. J. Comput. Chem. 26, 1668–1688 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W. & Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926 (1983).

    Article  CAS  Google Scholar 

  38. Dolinsky, T.J., Nielsen, J.E., McCammon, J.A. & Baker, N.A. PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res. 32, W665–W667 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dolinsky, T.J. et al. PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res. 35, W522–W525 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Olsson, M.H., Søndergaard, C.R., Rostkowski, M. & Jensen, J.H. PROPKA3: Consistent treatment of internal and surface residues in empirical pKa predictions. J. Chem. Theory Comput. 7, 525–537 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Bradbrook, G.M. et al. X-Ray and molecular dynamics studies of concanavalin-A glucoside and mannoside complexes relating structure to thermodynamics of binding. J. Chem. Soc., Faraday Trans. 94, 1603–1611 (1998).

    Article  CAS  Google Scholar 

  42. Oda, A., Yamaotsu, N. & Hirono, S. New AMBER force field parameters of heme iron for cytochrome P450s determined by quantum chemical calculations of simplified models. J. Comput. Chem. 26, 818–826 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Essmann, U. et al. A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8593 (1995).

    Article  CAS  Google Scholar 

  44. Roe, D.R. & Cheatham, T.E. III. PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 9, 3084–3095 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38, 27–28 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Johnson, E.R. et al. Revealing noncovalent interactions. J. Am. Chem. Soc. 132, 6498–6506 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Contreras-García, J. et al. NCIPLOT: a program for plotting non-covalent interaction regions. J. Chem. Theory Comput. 7, 625–632 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Graham, S.E., Syeda, F. & Cisneros, G.A. Computational prediction of residues involved in fidelity checking for DNA synthesis in DNA polymerase I. Biochemistry 51, 2569–2578 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Elias, A.A. & Cisneros, G.A. Computational study of putative residues involved in DNA synthesis fidelity checking in Thermus aquaticus DNA polymerase I. Adv. Protein Chem. Struct. Biol. 96, 39–75 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Dewage, S.W. & Cisneros, G.A. Computational analysis of ammonia transfer along two intramolecular tunnels in Staphylococcus aureus glutamine-dependent amidotransferase (GatCAB). J. Phys. Chem. B 119, 3669–3677 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cui, Q. & Karplus, M. Catalysis and specificity in enzymes: a study of triosephosphate isomerase and comparison with methyl glyoxal synthase. Adv. Protein Chem. 66, 315–372 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Martí, S. et al. Preorganization and reorganization as related factors in enzyme catalysis: the chorismate mutase case. Chemistry 9, 984–991 (2003).

    Article  PubMed  Google Scholar 

  53. Senn, H.M., O'Hagan, D. & Thiel, W. Insight into enzymatic C-F bond formation from QM and QM/MM calculations. J. Am. Chem. Soc. 127, 13643–13655 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Cisneros, G.A. et al. Reaction mechanism of the epsilon subunit of E. coli DNA polymerase III: insights into active site metal coordination and catalytically significant residues. J. Am. Chem. Soc. 131, 1550–1556 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Maiti, A., Michelson, A.Z., Armwood, C.J., Lee, J.K. & Drohat, A.C. Divergent mechanisms for enzymatic excision of 5-formylcytosine and 5-carboxylcytosine from DNA. J. Am. Chem. Soc. 135, 15813–15822 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Morgan, M.T., Bennett, M.T. & Drohat, A.C. Excision of 5-halogenated uracils by human thymine DNA glycosylase. Robust activity for DNA contexts other than CpG. J. Biol. Chem. 282, 27578–27586 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B. Niedziolka and the Wistar Institute Protein Expression Facility for help with protein expression in Sf9 cells and all members of our labs for insightful discussions. Computing time from Wayne State C&IT and additional mass spectrometry resources from I. Blair's lab are gratefully acknowledged. This work was supported by the Rita Allen Foundation Scholar Award to R.M.K. and by NIH grants (R01 GM110174 to B.A.G., R01 GM108583 to G.A.C., and F30 CA196097 to M.Y.L.).

Author information

Authors and Affiliations

Authors

Contributions

R.M.K., G.A.C., M.Y.L., and H.T. conceived the experiments. R.M.K., M.Y.L., D.J.C., J.E.D., X.-J.C., and B.A.G. were involved in the design and optimization of biochemical and cellular experiments, which were performed and analyzed by M.Y.L., J.E.D., and R.M.K. For MD simulations, G.A.C., H.T., M.Y.L., and R.M.K. were involved in the design of experiments, which were performed and analyzed by H.T. and G.A.C. The manuscript was written by M.Y.L., R.M.K., H.T., and G.A.C. and edited by all authors.

Corresponding authors

Correspondence to G Andrés Cisneros or Rahul M Kohli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–10 and Supplementary Tables 1–9. (PDF 2502 kb)

Supplementary Dataset 1

Force field parameters. (TAR 81 kb)

Source data for supplementary results (XLSX 43 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Torabifard, H., Crawford, D. et al. Mutations along a TET2 active site scaffold stall oxidation at 5-hydroxymethylcytosine. Nat Chem Biol 13, 181–187 (2017). https://doi.org/10.1038/nchembio.2250

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2250

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing