Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantitating drug-target engagement in single cells in vitro and in vivo

Abstract

Quantitation of drug target engagement in single cells has proven to be difficult, often leaving unanswered questions in the drug development process. We found that intracellular target engagement of unlabeled new therapeutics can be quantitated using polarized microscopy combined with competitive binding of matched fluorescent companion imaging probes. We quantitated the dynamics of target engagement of covalent BTK inhibitors, as well as reversible PARP inhibitors, in populations of single cells using a single companion imaging probe for each target. We then determined average in vivo tumor concentrations and found marked population heterogeneity following systemic delivery, revealing single cells with low target occupancy at high average target engagement in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Measuring single-cell drug binding through anisotropy competition imaging.
Figure 2: Ibrutinib target engagement.
Figure 3: Intracelullar PARP inhibitor target engagement.
Figure 4: In vivo olaparib target engagement.

Similar content being viewed by others

References

  1. Bunnage, M.E., Chekler, E.L. & Jones, L.H. Target validation using chemical probes. Nat. Chem. Biol. 9, 195–199 (2013).

    CAS  PubMed  Google Scholar 

  2. Morgan, P. et al. Can the flow of medicines be improved? Fundamental pharmacokinetic and pharmacological principles toward improving Phase II survival. Drug Discov. Today 17, 419–424 (2012).

    CAS  PubMed  Google Scholar 

  3. Smith, D.A., Di, L. & Kerns, E.H. The effect of plasma protein binding on in vivo efficacy: misconceptions in drug discovery. Nat. Rev. Drug Discov. 9, 929–939 (2010).

    CAS  PubMed  Google Scholar 

  4. Mateo, J., Ong, M., Tan, D.S., Gonzalez, M.A. & de Bono, J.S. Appraising iniparib, the PARP inhibitor that never was–what must we learn? Nat. Rev. Clin. Oncol. 10, 688–696 (2013).

    CAS  PubMed  Google Scholar 

  5. Cohen, M.S., Hadjivassiliou, H. & Taunton, J. A clickable inhibitor reveals context-dependent autoactivation of p90 RSK. Nat. Chem. Biol. 3, 156–160 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Gao, M. et al. Chemical genetics strategy identifies an HCV NS5A inhibitor with a potent clinical effect. Nature 465, 96–100 (2010).

    CAS  PubMed  Google Scholar 

  7. Honigberg, L.A. et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc. Natl. Acad. Sci. USA 107, 13075–13080 (2010).

    CAS  PubMed  Google Scholar 

  8. Miller, M.A. et al. Tumour-associated macrophages act as a slow-release reservoir of nano-therapeutic Pt(IV) pro-drug. Nat. Commun. 6, 8692 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Stadler, C. et al. Immunofluorescence and fluorescent-protein tagging show high correlation for protein localization in mammalian cells. Nat. Methods 10, 315–323 (2013).

    CAS  PubMed  Google Scholar 

  10. Simon, G.M., Niphakis, M.J. & Cravatt, B.F. Determining target engagement in living systems. Nat. Chem. Biol. 9, 200–205 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Munteanu, B. et al. Label-free in situ monitoring of histone deacetylase drug target engagement by matrix-assisted laser desorption ionization-mass spectrometry biotyping and imaging. Anal. Chem. 86, 4642–4647 (2014).

    CAS  PubMed  Google Scholar 

  12. Lomenick, B. et al. Target identification using drug affinity responsive target stability (DARTS). Proc. Natl. Acad. Sci. USA 106, 21984–21989 (2009).

    CAS  PubMed  Google Scholar 

  13. Hargreaves, R.J. & Rabiner, E.A. Translational PET imaging research. Neurobiol. Dis. 61, 32–38 (2014).

    PubMed  Google Scholar 

  14. Fischman, A.J., Alpert, N.M. & Rubin, R.H. Pharmacokinetic imaging: a noninvasive method for determining drug distribution and action. Clin. Pharmacokinet. 41, 581–602 (2002).

    CAS  PubMed  Google Scholar 

  15. Matthews, P.M., Rabiner, E.A., Passchier, J. & Gunn, R.N. Positron emission tomography molecular imaging for drug development. Br. J. Clin. Pharmacol. 73, 175–186 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Aboagye, E.O., Price, P.M. & Jones, T. In vivo pharmacokinetics and pharmacodynamics in drug development using positron-emission tomography. Drug Discov. Today 6, 293–302 (2001).

    CAS  PubMed  Google Scholar 

  17. Martinez Molina, D. et al. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science 341, 84–87 (2013).

    PubMed  Google Scholar 

  18. Blum, G., von Degenfeld, G., Merchant, M.J., Blau, H.M. & Bogyo, M. Noninvasive optical imaging of cysteine protease activity using fluorescently quenched activity-based probes. Nat. Chem. Biol. 3, 668–677 (2007).

    CAS  PubMed  Google Scholar 

  19. Bachovchin, D.A., Brown, S.J., Rosen, H. & Cravatt, B.F. Identification of selective inhibitors of uncharacterized enzymes by high-throughput screening with fluorescent activity-based probes. Nat. Biotechnol. 27, 387–394 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Menear, K.A. et al. 4-[3-(4-cyclopropanecarbonylpiperazine-1-carbonyl)-4-fluorobenzyl]-2H-phthalazin-1-one: a novel bioavailable inhibitor of poly(ADP-ribose) polymerase-1. J. Med. Chem. 51, 6581–6591 (2008).

    CAS  PubMed  Google Scholar 

  21. Turetsky, A., Kim, E., Kohler, R.H., Miller, M.A. & Weissleder, R. Single cell imaging of Bruton's tyrosine kinase using an irreversible inhibitor. Sci. Rep. 4, 4782 (2014).

    PubMed  PubMed Central  Google Scholar 

  22. Thurber, G.M. et al. Single-cell and subcellular pharmacokinetic imaging allows insight into drug action in vivo. Nat. Commun. 4, 1504 (2013).

    PubMed  PubMed Central  Google Scholar 

  23. Dubach, J.M. et al. In vivo imaging of specific drug-target binding at subcellular resolution. Nat. Commun. 5, 3946 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Wahlberg, E. et al. Family-wide chemical profiling and structural analysis of PARP and tankyrase inhibitors. Nat. Biotechnol. 30, 283–288 (2012).

    CAS  PubMed  Google Scholar 

  25. Evans, E.K. et al. Inhibition of Btk with CC-292 provides early pharmacodynamic assessment of activity in mice and humans. J. Pharmacol. Exp. Ther. 346, 219–228 (2013).

    CAS  PubMed  Google Scholar 

  26. Roux, J. et al. Fractional killing arises from cell-to-cell variability in overcoming a caspase activity threshold. Mol. Syst. Biol. 11, 803 (2015).

    PubMed  PubMed Central  Google Scholar 

  27. Arunlakshana, O. & Schild, H.O. Some quantitative uses of drug antagonists. Br. J. Pharmacol. Chemother. 14, 48–58 (1959).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Shen, Y. et al. BMN 673, a novel and highly potent PARP1/2 inhibitor for the treatment of human cancers with DNA repair deficiency. Clin. Cancer Res. 19, 5003–5015 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Donawho, C.K. et al. ABT-888, an orally active poly(ADP-ribose) polymerase inhibitor that potentiates DNA-damaging agents in preclinical tumor models. Clin. Cancer Res. 13, 2728–2737 (2007).

    CAS  PubMed  Google Scholar 

  30. Pittet, M.J. & Weissleder, R. Intravital imaging. Cell 147, 983–991 (2011).

    CAS  PubMed  Google Scholar 

  31. Dalerba, P. et al. Single-cell dissection of transcriptional heterogeneity in human colon tumors. Nat. Biotechnol. 29, 1120–1127 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Meimetis, L.G. et al. Fluorescent vinblastine probes for live cell imaging. Chem. Commun. (Camb.) 52, 9953–9956 (2016).

    CAS  Google Scholar 

  33. Niepel, M., Spencer, S.L. & Sorger, P.K. Non-genetic cell-to-cell variability and the consequences for pharmacology. Curr. Opin. Chem. Biol. 13, 556–561 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Henneman, L. et al. Selective resistance to the PARP inhibitor olaparib in a mouse model for BRCA1-deficient metaplastic breast cancer. Proc. Natl. Acad. Sci. USA 112, 8409–8414 (2015).

    CAS  PubMed  Google Scholar 

  35. Spencer, S.L., Gaudet, S., Albeck, J.G., Burke, J.M. & Sorger, P.K. Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature 459, 428–432 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Trédan, O., Galmarini, C.M., Patel, K. & Tannock, I.F. Drug resistance and the solid tumor microenvironment. J. Natl. Cancer Inst. 99, 1441–1454 (2007).

    PubMed  Google Scholar 

  37. Minchinton, A.I. & Tannock, I.F. Drug penetration in solid tumours. Nat. Rev. Cancer 6, 583–592 (2006).

    CAS  PubMed  Google Scholar 

  38. Kim, E. et al. Optimized Near-IR fluorescent agents for in vivo imaging of Btk expression. Bioconjug. Chem. 26, 1513–1518 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Spitzer, M.H. & Nolan, G.P. Mass cytometry: single cells, many features. Cell 165, 780–791 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wu, A.R. et al. Quantitative assessment of single-cell RNA-sequencing methods. Nat. Methods 11, 41–46 (2014).

    CAS  PubMed  Google Scholar 

  41. Lin, J.R., Fallahi-Sichani, M. & Sorger, P.K. Highly multiplexed imaging of single cells using a high-throughput cyclic immunofluorescence method. Nat. Commun. 6, 8390 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Laughney, A.M. et al. Single-cell pharmacokinetic imaging reveals a therapeutic strategy to overcome drug resistance to the microtubule inhibitor eribulin. Sci Transl. Med. 6, 261ra152 (2014).

    PubMed  PubMed Central  Google Scholar 

  43. Perrin, F. The polarisation of fluorescence light. Average life of molecules in their excited state. J. Phys. Radium 7, 390–401 (1926).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Mitchison for his thoughts on experimental approaches and comments on the manuscript. This work was supported by US National Institutes of Health grants T32CA079443 (J.M.D., M.C. and R.W.), K99CA198857 (J.M.D.), R01CA164448, P50CA086355 and R01HL122208 (R.W.), and Department of Defense grant BCRP #BC134081 (R.J.G.).

Author information

Authors and Affiliations

Authors

Contributions

J.M.D., C.V. and R.W. designed the experiments. E.K. and L.G.M. synthesized CIPs. E.K. performed in-gel experiments. J.M.D., K.Y. and R.J.G. performed cell experiments. J.M.D. performed in vivo experiments. J.M.D. and M.C. analyzed data. J.M.D. and C.V. performed imaging experiments. J.M.D. and R.W. wrote the paper, and all of the authors reviewed and approved the final manuscript.

Corresponding authors

Correspondence to Claudio Vinegoni or Ralph Weissleder.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–12 and Supplementary Table 1. (PDF 15117 kb)

Supplementary Note

Synthetic Procedures. (PDF 321 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubach, J., Kim, E., Yang, K. et al. Quantitating drug-target engagement in single cells in vitro and in vivo. Nat Chem Biol 13, 168–173 (2017). https://doi.org/10.1038/nchembio.2248

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2248

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer