Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genome-wide chemical mapping of O-GlcNAcylated proteins in Drosophila melanogaster

Abstract

N-Acetylglucosamine β-O-linked to nucleocytoplasmic proteins (O-GlcNAc) is implicated in the regulation of gene expression in organisms, from humans to Drosophila melanogaster. Within Drosophila, O-GlcNAc transferase (OGT) is one of the Polycomb group proteins (PcGs) that act through Polycomb group response elements (PREs) to silence homeotic (HOX) and other PcG target genes. Using Drosophila, we identify new O-GlcNAcylated PcG proteins and develop an antibody-free metabolic feeding approach to chemoselectively map genomic loci enriched in O-GlcNAc using next-generation sequencing. We find that O-GlcNAc is distributed to specific genomic loci both in cells and in vivo. Many of these loci overlap with PREs, but O-GlcNAc is also present at other loci lacking PREs. Loss of OGT leads to altered gene expression not only at loci containing PREs but also at loci lacking PREs, including several heterochromatic genes. These data suggest that O-GlcNAc acts through multiple mechanisms to regulate gene expression in Drosophila.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A combined metabolic feeding–chemoselective ligation strategy enables labeling of chromatin-associated proteins from Drosophila S2 cells.
Figure 2: Metabolic feeding combined with antibody-free genome-wide chromatin precipitation and sequencing reveals O-GlcNAcylated proteins at discrete loci in Drosophila S2 cells.
Figure 3: Comparative bioinformatics analysis of next-generation sequencing data from S2 cells using Ac4GalNAz feeding, WGA precipitation, and GalT labeling.
Figure 4: Ac4GalNAz feeding enables in vivo labeling of Drosophila at larval, pupal, and fly stages.
Figure 5: O-GlcNAcylated proteins are distributed to genomic loci in Drosophila that contain PREs as well as those that lack PREs and gene expression from these diverse loci is regulated by OGT.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Kassis, J.A. Unusual properties of regulatory DNA from the Drosophila engrailed gene: three “pairing-sensitive” sites within a 1.6-kb region. Genetics 136, 1025–1038 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Schwartz, Y.B. & Pirrotta, V. Polycomb silencing mechanisms and the management of genomic programmes. Nat. Rev. Genet. 8, 9–22 (2007).

    CAS  PubMed  Google Scholar 

  3. Kassis, J.A. & Brown, J.L. Polycomb group response elements in Drosophila and vertebrates. Adv. Genet. 81, 83–118 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Niessen, H.E.C., Demmers, J.A. & Voncken, J.W. Talking to chromatin: post-translational modulation of polycomb group function. Epigenetics Chromatin 2, 10 (2009).

    PubMed  PubMed Central  Google Scholar 

  5. Gambetta, M.C. & Müller, J. O-GlcNAcylation prevents aggregation of the Polycomb group repressor polyhomeotic. Dev. Cell 31, 629–639 (2014).

    CAS  PubMed  Google Scholar 

  6. Bradbury, A. & Plückthun, A. Reproducibility: standardize antibodies used in research. Nature 518, 27–29 (2015).

    CAS  PubMed  Google Scholar 

  7. Peach, S.E., Rudomin, E.L., Udeshi, N.D., Carr, S.A. & Jaffe, J.D. Quantitative assessment of chromatin immunoprecipitation grade antibodies directed against histone modifications reveals patterns of co-occurring marks on histone protein molecules. Mol. Cell. Proteomics 11, 128–137 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Pindyurin, A.V., Pagie, L., Kozhevnikova, E.N., van Arensbergen, J. & van Steensel, B. Inducible DamID systems for genomic mapping of chromatin proteins in Drosophila. Nucleic Acids Res. 44, 5646–5657 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Song, C.X. et al. Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat. Biotechnol. 29, 68–72 (2011).

    CAS  PubMed  Google Scholar 

  10. Hart, G.W., Housley, M.P. & Slawson, C. Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 446, 1017–1022 (2007).

    CAS  PubMed  Google Scholar 

  11. Sinclair, D.A.R. et al. Drosophila O-GlcNAc transferase (OGT) is encoded by the Polycomb group (PcG) gene, super sex combs (sxc). Proc. Natl. Acad. Sci. USA 106, 13427–13432 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Gambetta, M.C., Oktaba, K. & Müller, J. Essential role of the glycosyltransferase sxc/Ogt in polycomb repression. Science 325, 93–96 (2009).

    CAS  PubMed  Google Scholar 

  13. Kelly, W.G. & Hart, G.W. Glycosylation of chromosomal proteins: localization of O-linked N-acetylglucosamine in Drosophila chromatin. Cell 57, 243–251 (1989).

    CAS  PubMed  Google Scholar 

  14. Teo, C.F. et al. Glycopeptide-specific monoclonal antibodies suggest new roles for O-GlcNAc. Nat. Chem. Biol. 6, 338–343 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Zaro, B.W., Hang, H.C. & Pratt, M.R. Incorporation of unnatural sugars for the identification of glycoproteins. Methods Mol. Biol. 951, 57–67 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. McKay, C.S. & Finn, M.G. Click chemistry in complex mixtures: bioorthogonal bioconjugation. Chem. Biol. 21, 1075–1101 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Khidekel, N. et al. A chemoenzymatic approach toward the rapid and sensitive detection of O-GlcNAc posttranslational modifications. J. Am. Chem. Soc. 125, 16162–16163 (2003).

    CAS  PubMed  Google Scholar 

  18. Vocadlo, D.J., Hang, H.C., Kim, E.J., Hanover, J.A. & Bertozzi, C.R. A chemical approach for identifying O-GlcNAc-modified proteins in cells. Proc. Natl. Acad. Sci. USA 100, 9116–9121 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Sprung, R. et al. Tagging-via-substrate strategy for probing O-GlcNAc modified proteins. J. Proteome Res. 4, 950–957 (2005).

    CAS  PubMed  Google Scholar 

  20. Verdoes, M. et al. Azido-BODIPY acid reveals quantitative Staudinger-Bertozzi ligation in two-step activity-based proteasome profiling. Chembiochem 9, 1735–1738 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Verhelst, S.H., Fonović, M. & Bogyo, M. A mild chemically cleavable linker system for functional proteomic applications. Angew. Chem. Int. Edn Engl. 46, 1284–1286 (2007).

    CAS  Google Scholar 

  22. Zhu, Y. et al. O-GlcNAc occurs cotranslationally to stabilize nascent polypeptide chains. Nat. Chem. Biol. 11, 319–325 (2015).

    CAS  PubMed  Google Scholar 

  23. Boyce, M. et al. Metabolic cross-talk allows labeling of O-linked beta-N-acetylglucosamine-modified proteins via the N-acetylgalactosamine salvage pathway. Proc. Natl. Acad. Sci. USA 108, 3141–3146 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Chuh, K.N., Zaro, B.W., Piller, F., Piller, V. & Pratt, M.R. Changes in metabolic chemical reporter structure yield a selective probe of O-GlcNAc modification. J. Am. Chem. Soc. 136, 12283–12295 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lin, W., Gao, L. & Chen, X. Protein-Specific Imaging of O-GlcNAcylation in Single Cells. ChemBioChem 16, 2571–2575 (2015).

    CAS  PubMed  Google Scholar 

  26. Hiromura, M. et al. YY1 is regulated by O-linked N-acetylglucosaminylation (O-GlcNAcylation). J. Biol. Chem. 278, 14046–14052 (2003).

    CAS  PubMed  Google Scholar 

  27. Capotosti, F. et al. O-GlcNAc transferase catalyzes site-specific proteolysis of HCF-1. Cell 144, 376–388 (2011).

    CAS  PubMed  Google Scholar 

  28. Shen, D.L., Gloster, T.M., Yuzwa, S.A. & Vocadlo, D.J. Insights into O-linked N-acetylglucosamine ([0-9]O-GlcNAc) processing and dynamics through kinetic analysis of O-GlcNAc transferase and O-GlcNAcase activity on protein substrates. J. Biol. Chem. 287, 15395–15408 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Dennis, R.J. et al. Structure and mechanism of a bacterial beta-glucosaminidase having O-GlcNAcase activity. Nat. Struct. Mol. Biol. 13, 365–371 (2006).

    CAS  PubMed  Google Scholar 

  30. Hédou, J., Bastide, B., Page, A., Michalski, J.C. & Morelle, W. Mapping of O-linked beta-N-acetylglucosamine modification sites in key contractile proteins of rat skeletal muscle. Proteomics 9, 2139–2148 (2009).

    PubMed  Google Scholar 

  31. Schuettengruber, B. et al. Functional anatomy of polycomb and trithorax chromatin landscapes in Drosophila embryos. PLoS Biol. 7, e13 (2009).

    PubMed  Google Scholar 

  32. Landt, S.G. et al. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res. 22, 1813–1831 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Schwartz, Y.B. et al. Genome-wide analysis of Polycomb targets in Drosophila melanogaster. Nat. Genet. 38, 700–705 (2006).

    CAS  PubMed  Google Scholar 

  34. Zeng, J., Kirk, B.D., Gou, Y., Wang, Q. & Ma, J. Genome-wide polycomb target gene prediction in Drosophila melanogaster. Nucleic Acids Res. 40, 5848–5863 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Tolhuis, B. et al. Genome-wide profiling of PRC1 and PRC2 Polycomb chromatin binding in Drosophila melanogaster. Nat. Genet. 38, 694–699 (2006).

    CAS  PubMed  Google Scholar 

  36. Love, M.I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed  PubMed Central  Google Scholar 

  37. Oktaba, K. et al. Dynamic regulation by polycomb group protein complexes controls pattern formation and the cell cycle in Drosophila. Dev. Cell 15, 877–889 (2008).

    CAS  PubMed  Google Scholar 

  38. Nègre, N. et al. A cis-regulatory map of the Drosophila genome. Nature 471, 527–531 (2011).

    PubMed  PubMed Central  Google Scholar 

  39. Eissenberg, J.C. & Elgin, S.C.R. HP1a: a structural chromosomal protein regulating transcription. Trends Genet. 30, 103–110 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Cummings, R.D. & Etzler, M.E. Antibodies and lectins in glycan analysis. in Essentials of Glycobiology 2nd edn. (eds. Varki, A. et al.) (Cold Spring Harbor Laboratory Press, 2009).

  41. Gambetta, M.C. & Müller, J. A critical perspective of the diverse roles of O-GlcNAc transferase in chromatin. Chromosoma 124, 429–442 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Akan, I., Love, D.C., Harwood, K.R., Bond, M.R. & Hanover, J.A. Drosophila O-GlcNAcase Deletion Globally Perturbs Chromatin O-GlcNAcylation. J. Biol. Chem. 291, 9906–9919 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Bond, M.R. & Hanover, J.A. A little sugar goes a long way: the cell biology of O-GlcNAc. J. Cell Biol. 208, 869–880 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Mariappa, D. et al. Dual functionality of O-GlcNAc transferase is required for Drosophila development. Open Biol. 5, 150234 (2015).

    PubMed  PubMed Central  Google Scholar 

  45. Wang, R. et al. Profiling genome-wide chromatin methylation with engineered posttranslation apparatus within living cells. J. Am. Chem. Soc. 135, 1048–1056 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Brown, J.L., Fritsch, C., Mueller, J. & Kassis, J.A. The Drosophila pho-like gene encodes a YY1-related DNA binding protein that is redundant with pleiohomeotic in homeotic gene silencing. Development 130, 285–294 (2003).

    CAS  PubMed  Google Scholar 

  47. Rodriguez-Jato, S., Busturia, A. & Herr, W. Drosophila melanogaster dHCF interacts with both PcG and TrxG epigenetic regulators. PLoS One 6, e27479 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed  PubMed Central  Google Scholar 

  50. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang, Y. et al. Model-based analysis of ChIP–Seq (MACS). Genome Biol. 9, R137 (2008).

    PubMed  PubMed Central  Google Scholar 

  52. Quinlan, A.R. & Hall, I.M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Favorov, A. et al. Exploring massive, genome scale datasets with the GenometriCorr package. PLoS Comput. Biol. 8, e1002529 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Shin, H., Liu, T., Manrai, A.K. & Liu, X.S. CEAS: cis-regulatory element annotation system. Bioinformatics 25, 2605–2606 (2009).

    CAS  PubMed  Google Scholar 

  55. Huang, W., Sherman, B.T. & Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    CAS  Google Scholar 

Download references

Acknowledgements

Financial support through a Discovery Grant the Natural Sciences and Engineering Research (D.J.V., NSERC, RGPIN/-2015-05426) and the Canadian Institutes of Health Research (D.J.V., D.S., B.M.H., CIHR, MOP-102756) is gratefully acknowledged. This project was also supported in part by a contract from Genome Canada/Genome British Columbia (173CIC). R.D.M. thanks the CIHR for a new investigator award. D.J.V. acknowledges the kind support of the Canada Research Chairs program for a Tier I Canada Research Chair in Chemical Glycobiology and NSERC for support as an E.W.R. Steacie Memorial Fellow. S.C. thanks the CIHR for a postdoctoral fellowships. M.M. thanks NSERC for a CGS-M graduate fellowship. The authors thank J. Kassis (National Institutes of Health, Bethesda, Maryland, USA), J. Muller (Max Planck Institute of Biochemistry, Frankfurt, Germany, H. Brock (University of British Columbia, Canada), D. Arndt-Jovin (Max Planck Institute for Biophysical Chemistry, Göttingen, Germany) and W. Herr (University of Lausanne, Lausanne, Switzerland) for generously providing antibodies, A. Wilson for his assistance in ChIP data analysis, D. Fornika for assistance with performing ChIP sequencing, and T. Cruz-Sanchez, G. Cavalli, and Y. Zhu for early support of this work.

Author information

Authors and Affiliations

Authors

Contributions

T.-W.L. and D.J.V. designed research; T.-W.L. performed all cell culture experiments and generated DNA samples for sequencing; T.-W.L. and M.M. prepared RNA samples and performed all qPCR experiments, T.-W.L., K.B., and M.M. performed fly labeling experiments; S.C., K.B., B.M.H., and D.A.S. generated specialized materials including unique reagents and wild-type and mutant flies; M.M. performed detailed bioinformatics analyses; T.-W.L., M.M., R.D.M., D.A.S., and D.J.V. analyzed data, T.-W.L., M.M. and D.J.V. wrote the manuscript; all authors provided input into the manuscript.

Corresponding author

Correspondence to David J Vocadlo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–23 and Supplementary Tables 1–2. (PDF 4593 kb)

Supplementary Dataset 1

O-GlcNAc containing genes in white pre-pupae found by Ac4GalNAz ChIP–seq and colocalization with other PRE marks. (XLSX 95 kb)

Supplementary Dataset 2

O-GlcNAc containing genes in white pre-pupae found by Ac4GalNAz ChIP–seq and colocalization with other PRE marks that were found to be differential expression in wild type and sxc−/− pupae by qPCR. (XLSX 11 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, TW., Myschyshyn, M., Sinclair, D. et al. Genome-wide chemical mapping of O-GlcNAcylated proteins in Drosophila melanogaster. Nat Chem Biol 13, 161–167 (2017). https://doi.org/10.1038/nchembio.2247

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2247

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing