Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition

Abstract

Ferroptosis is a form of regulated necrotic cell death controlled by glutathione peroxidase 4 (GPX4). At present, mechanisms that could predict sensitivity and/or resistance and that may be exploited to modulate ferroptosis are needed. We applied two independent approaches—a genome-wide CRISPR-based genetic screen and microarray analysis of ferroptosis-resistant cell lines—to uncover acyl-CoA synthetase long-chain family member 4 (ACSL4) as an essential component for ferroptosis execution. Specifically, Gpx4Acsl4 double-knockout cells showed marked resistance to ferroptosis. Mechanistically, ACSL4 enriched cellular membranes with long polyunsaturated ω6 fatty acids. Moreover, ACSL4 was preferentially expressed in a panel of basal-like breast cancer cell lines and predicted their sensitivity to ferroptosis. Pharmacological targeting of ACSL4 with thiazolidinediones, a class of antidiabetic compound, ameliorated tissue demise in a mouse model of ferroptosis, suggesting that ACSL4 inhibition is a viable therapeutic approach to preventing ferroptosis-related diseases.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Identification of ACSL4 as an essential prerequisite for ferroptosis execution.
Figure 2: ACSL4 specifically contributes to ferroptotic cell death.
Figure 3: ACSL4 sensitizes to ferroptosis by specifically esterifying AA and AdA into PE.
Figure 4: ACSL4 predicts sensitivity in a panel of basal-like breast cancer cell lines.
Figure 5: TZDs protect from ferroptosis through inhibition of ACSL4.

References

  1. 1

    Conrad, M., Angeli, J.P., Vandenabeele, P. & Stockwell, B.R. Regulated necrosis: disease relevance and therapeutic opportunities. Nat. Rev. Drug Discov. 15, 348–366 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Friedmann Angeli, J.P. et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol. 16, 1180–1191 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Matsushita, M. et al. T cell lipid peroxidation induces ferroptosis and prevents immunity to infection. J. Exp. Med. 212, 555–568 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Yang, W.S. et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 156, 317–331 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Linkermann, A. et al. Synchronized renal tubular cell death involves ferroptosis. Proc. Natl. Acad. Sci. USA 111, 16836–16841 (2014).

    Article  CAS  Google Scholar 

  6. 6

    Jiang, L. et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520, 57–62 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Dolma, S., Lessnick, S.L., Hahn, W.C. & Stockwell, B.R. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell 3, 285–296 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Dixon, S.J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Ishii, T., Sugita, Y. & Bannai, S. Regulation of glutathione levels in mouse spleen lymphocytes by transport of cysteine. J. Cell. Physiol. 133, 330–336 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Ursini, F., Maiorino, M., Valente, M., Ferri, L. & Gregolin, C. Purification from pig liver of a protein which protects liposomes and biomembranes from peroxidative degradation and exhibits glutathione peroxidase activity on phosphatidylcholine hydroperoxides. Biochim. Biophys. Acta 710, 197–211 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Yang, W.S. & Stockwell, B.R. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem. Biol. 15, 234–245 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Dixon, S.J. et al. Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. eLife 3, e02523 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13

    Louandre, C. et al. Iron-dependent cell death of hepatocellular carcinoma cells exposed to sorafenib. Int. J. Cancer 133, 1732–1742 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Hayano, M., Yang, W.S., Corn, C.K., Pagano, N.C. & Stockwell, B.R. Loss of cysteinyl-tRNA synthetase (CARS) induces the transsulfuration pathway and inhibits ferroptosis induced by cystine deprivation. Cell Death Differ. 23, 270–278 (2016).

    Article  CAS  Google Scholar 

  15. 15

    Seiler, A. et al. Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death. Cell Metab. 8, 237–248 (2008).

    Article  CAS  Google Scholar 

  16. 16

    Koike-Yusa, H., Li, Y., Tan, E.P., Velasco-Herrera, Mdel.C. & Yusa, K. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat. Biotechnol. 32, 267–273 (2014).

    Article  CAS  Google Scholar 

  17. 17

    Wortmann, M. et al. Combined deficiency in glutathione peroxidase 4 and vitamin E causes multiorgan thrombus formation and early death in mice. Circ. Res. 113, 408–417 (2013).

    Article  CAS  Google Scholar 

  18. 18

    Canli, Ö. et al. Glutathione peroxidase 4 prevents necroptosis in mouse erythroid precursors. Blood 127, 139–148 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Soupene, E., Fyrst, H. & Kuypers, F.A. Mammalian acyl-CoA:lysophosphatidylcholine acyltransferase enzymes. Proc. Natl. Acad. Sci. USA 105, 88–93 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20

    Yamanaka, K. et al. A novel fluorescent probe with high sensitivity and selective detection of lipid hydroperoxides in cells. RSC Advances 2, 7894–7900 (2012).

    Article  CAS  Google Scholar 

  21. 21

    Dixon, S.J. et al. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death. ACS Chem. Biol. 10, 1604–1609 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Yin, H., Xu, L. & Porter, N.A. Free radical lipid peroxidation: mechanisms and analysis. Chem. Rev. 111, 5944–5972 (2011).

    Article  CAS  Google Scholar 

  23. 23

    Pratt, D.A., Mills, J.H. & Porter, N.A. Theoretical calculations of carbon-oxygen bond dissociation enthalpies of peroxyl radicals formed in the autoxidation of lipids. J. Am. Chem. Soc. 125, 5801–5810 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Kagan, V.E. Oxidized arachidonic and adrenic phosphatidylethanolamines navigate cells to ferroptosis. Nat. Chem. Biol. http://dx.doi.org/nchembio.2238 (2016).

  25. 25

    Timmerman, L.A. et al. Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target. Cancer Cell 24, 450–465 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Kim, J.H., Lewin, T.M. & Coleman, R.A. Expression and characterization of recombinant rat Acyl-CoA synthetases 1, 4, and 5. Selective inhibition by triacsin C and thiazolidinediones. J. Biol. Chem. 276, 24667–24673 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Gale, E.A. Lessons from the glitazones: a story of drug development. Lancet 357, 1870–1875 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Küch, E.M. et al. Differentially localized acyl-CoA synthetase 4 isoenzymes mediate the metabolic channeling of fatty acids towards phosphatidylinositol. Biochim. Biophys. Acta 1841, 227–239 (2014).

    Article  CAS  Google Scholar 

  29. 29

    Van Horn, C.G. et al. Characterization of recombinant long-chain rat acyl-CoA synthetase isoforms 3 and 6: identification of a novel variant of isoform 6. Biochemistry 44, 1635–1642 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Brash, A.R. Arachidonic acid as a bioactive molecule. J. Clin. Invest. 107, 1339–1345 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Orlando, U.D. et al. Acyl-CoA synthetase-4, a new regulator of mTOR and a potential therapeutic target for enhanced estrogen receptor function in receptor-positive and -negative breast cancer. Oncotarget 6, 42632–42650 2015).

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32

    Wu, X. et al. ACSL4 promotes prostate cancer growth, invasion and hormonal resistance. Oncotarget 6, 44849–44863 (2015).

    PubMed  PubMed Central  Google Scholar 

  33. 33

    Wu, X. et al. Long chain fatty acyl-CoA synthetase 4 is a biomarker for and mediator of hormone resistance in human breast cancer. PLoS One 8, e77060 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Monaco, M.E. et al. Expression of long-chain fatty acyl-CoA synthetase 4 in breast and prostate cancers is associated with sex steroid hormone receptor negativity. Transl. Oncol. 3, 91–98 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  35. 35

    Hudis, C.A. & Gianni, L. Triple-negative breast cancer: an unmet medical need. Oncologist 16 (Suppl. 1), 1–11 (2011).

    Article  Google Scholar 

  36. 36

    Jin, J. et al. Neuroprotective effects of PPAR-γ agonist rosiglitazone in N171-82Q mouse model of Huntington's disease. J. Neurochem. 125, 410–419 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Heneka, M.T., Fink, A. & Doblhammer, G. Effect of pioglitazone medication on the incidence of dementia. Ann. Neurol. 78, 284–294 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Belfort, R. et al. A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. N. Engl. J. Med. 355, 2297–2307 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Aithal, G.P. et al. Randomized, placebo-controlled trial of pioglitazone in nondiabetic subjects with nonalcoholic steatohepatitis. Gastroenterology 135, 1176–1184 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Han, L. et al. Rosiglitazone promotes white matter integrity and long-term functional recovery after focal cerebral ischemia. Stroke 46, 2628–2636 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Culman, J. et al. Treatment of rats with pioglitazone in the reperfusion phase of focal cerebral ischemia: a preclinical stroke trial. Exp. Neurol. 238, 243–253 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Rennings, A.J. et al. Rosiglitazone reduces ischaemia-reperfusion injury in patients with the metabolic syndrome. Eur. Heart J. 31, 983 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  43. 43

    Wu, J.S. et al. Ligand-activated peroxisome proliferator-activated receptor-gamma protects against ischemic cerebral infarction and neuronal apoptosis by 14-3-3 epsilon upregulation. Circulation 119, 1124–1134 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Kuboki, S. et al. Peroxisome proliferator-activated receptor-γ protects against hepatic ischemia/reperfusion injury in mice. Hepatology 47, 215–224 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Tietze, F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal. Biochem. 27, 502–522 (1969).

    Article  CAS  Google Scholar 

  46. 46

    Bannai, S. & Ishii, T. Transport of cystine and cysteine and cell growth in cultured human diploid fibroblasts: effect of glutamate and homocysteate. J. Cell. Physiol. 112, 265–272 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Roveri, A., Maiorino, M. & Ursini, F. Enzymatic and immunological measurements of soluble and membrane-bound phospholipid-hydroperoxide glutathione peroxidase. Methods Enzymol. 233, 202–212 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Brinkman, E.K., Chen, T., Amendola, M. & van Steensel, B. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 42, e168 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Mannes, A.M., Seiler, A., Bosello, V., Maiorino, M. & Conrad, M. Cysteine mutant of mammalian GPx4 rescues cell death induced by disruption of the wild-type selenoenzyme. FASEB J. 25, 2135–2144 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Haack, T.B. et al. ELAC2 mutations cause a mitochondrial RNA processing defect associated with hypertrophic cardiomyopathy. Am. J. Hum. Genet. 93, 211–223 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Bornkamm, G.W. et al. Stringent doxycycline-dependent control of gene activities using an episomal one-vector system. Nucleic Acids Res. 33, e137 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank B.R. Stockwell (Columbia University, New York, USA) for providing RSL3 and F. Ursini and M. Maiorino (Universitàdegli Studi di Padova, Padua, Italy) for phosphatidylcholine hydroperoxide. We would also like to thank A. Berns (the Netherlands Cancer Institute) for providing the ROSA26-CreERT2 mouse line. SK-BR-3 cells were a gift from G. Multhoff (Technical University Munich). This work was in part supported by grants from the Deutsche Forschungsgemeinschaft (DFG) CO 291/2-3 and CO 291/5-1 to M.C., a fellowship from the Japan Society for the Promotion of Science (JSPS) to S.K., the Human Frontier Science Program (HFSP) RGP0013 to M.C. and V.E.K., the German Bundesministerium für Bildung und Forschung (BMBF) through the European E-Rare Network for mitochondrial disorders GENOMIT (01GM1603) to H.P., the National Institute of Health (NIH) (P01HL114453, U19AI068021, NS076511, NS061817, ES020693) to V.E.K. and the Bavarian Ministry of Economic Affairs (m4 Award) to J.A.S. and M.C.

Author information

Affiliations

Authors

Contributions

J.P.F.A., S.D. and M.C. conceived the study. M.A. and A.W. carried out and analyzed electron microscopy studies. Y.Y.T., G.M., F.Q., H.B. and V.E.K. performed oxi-lipidomics analysis and data interpretation. M.I., J.B., H.P. and D.T. conducted microarray analysis, deep-sequencing and analysis. S.D., B.P., E.P., S.K., I.I. and J.P.F.A. performed in vitro and in vivo experiments. J.F., C.H.S. and W.W. provided reagents and participated in the discussion. S.D., J.A.S., J.P.F.A. and M.C. performed evaluation and interpretation of the in vitro data. J.P.F.A. and M.C. wrote the paper. All authors read and agreed on the content of the paper.

Corresponding authors

Correspondence to José Pedro Friedmann Angeli or Marcus Conrad.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results and Supplementary Figures 1–6. (PDF 13257 kb)

Supplementary Table 1

Statistical analysis of expression profiling of ferroptosis-resistant cells. (XLSX 38949 kb)

Supplementary Table 2

Single gRNA counts after RSL3 and erastin selections. (XLSX 8139 kb)

Supplementary Table 3

Gene list of expression profiling of ferroptosis-resistant cells. (XLSX 9555 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Doll, S., Proneth, B., Tyurina, Y. et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol 13, 91–98 (2017). https://doi.org/10.1038/nchembio.2239

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing