Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ubiquitin utilizes an acidic surface patch to alter chromatin structure

Abstract

Ubiquitylation of histone H2B, associated with gene activation, leads to chromatin decompaction through an unknown mechanism. We used a hydrogen–deuterium exchange strategy coupled with NMR spectroscopy to map the ubiquitin surface responsible for its structural effects on chromatin. Our studies revealed that a previously uncharacterized acidic patch on ubiquitin comprising residues Glu16 and Glu18 is essential for decompaction. These residues mediate promiscuous electrostatic interactions with the basic histone proteins, potentially positioning the ubiquitin moiety as a dynamic 'wedge' that prevents the intimate association of neighboring nucleosomes. Using two independent crosslinking strategies and an oligomerization assay, we also showed that ubiquitin–ubiquitin contacts occur in the chromatin environment and are important for the solubilization of the chromatin polymers. Our work highlights a novel, chromatin-related aspect of the 'ubiquitin code' and sheds light on how the information-rich ubiquitin modification can orchestrate different biochemical outcomes using distinct surface features.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental strategy for detecting ubiquitin interaction surfaces in nucleosome arrays.
Figure 2: Ubiquitin residues protected from backbone H/D exchange in nucleosome arrays.
Figure 3: Effect of ubiquitin mutations on intra- and inter-fiber compaction.
Figure 4: Ubiquitin–chromatin interactions probed with crosslinking experiments.
Figure 5: Intra-array ubiquitin–ubiquitin interactions impede oligomerization.
Figure 6: Mechanism of chromatin decompaction induced by H2B ubiquitylation.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Woodcock, C.L. & Ghosh, R.P. Chromatin higher-order structure and dynamics. Cold Spring Harb. Perspect. Biol. 2, a000596 (2010).

    PubMed  PubMed Central  Google Scholar 

  2. Komander, D. & Rape, M. The ubiquitin code. Annu. Rev. Biochem. 81, 203–229 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Sloper-Mould, K.E., Jemc, J.C., Pickart, C.M. & Hicke, L. Distinct functional surface regions on ubiquitin. J. Biol. Chem. 276, 30483–30489 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Dikic, I., Wakatsuki, S. & Walters, K.J. Ubiquitin-binding domains - from structures to functions. Nat. Rev. Mol. Cell Biol. 10, 659–671 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Braun, S. & Madhani, H.D. Shaping the landscape: mechanistic consequences of ubiquitin modification of chromatin. EMBO Rep. 13, 619–630 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang, H. et al. Role of histone H2A ubiquitination in Polycomb silencing. Nature 431, 873–878 (2004).

    CAS  PubMed  Google Scholar 

  7. Zhou, W. et al. Histone H2A monoubiquitination represses transcription by inhibiting RNA polymerase II transcriptional elongation. Mol. Cell 29, 69–80 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ng, H.H., Xu, R.M., Zhang, Y. & Struhl, K. Ubiquitination of histone H2B by Rad6 is required for efficient Dot1-mediated methylation of histone H3 lysine 79. J. Biol. Chem. 277, 34655–34657 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Sun, Z.W. & Allis, C.D. Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature 418, 104–108 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Minsky, N. et al. Monoubiquitinated H2B is associated with the transcribed region of highly expressed genes in human cells. Nat. Cell Biol. 10, 483–488 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Kim, J. et al. RAD6-Mediated transcription-coupled H2B ubiquitylation directly stimulates H3K4 methylation in human cells. Cell 137, 459–471 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fuchs, G., Hollander, D., Voichek, Y., Ast, G. & Oren, M. Cotranscriptional histone H2B monoubiquitylation is tightly coupled with RNA polymerase II elongation rate. Genome Res. 24, 1572–1583 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Holt, M.T. et al. Identification of a functional hotspot on ubiquitin required for stimulation of methyltransferase activity on chromatin. Proc. Natl. Acad. Sci. USA 112, 10365–10370 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhou, L. et al. Evidence that ubiquitylated H2B corrals hDot1L on the nucleosomal surface to induce H3K79 methylation. Nat. Commun. 7, 10589 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fierz, B. et al. Histone H2B ubiquitylation disrupts local and higher-order chromatin compaction. Nat. Chem. Biol. 7, 113–119 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Machida, S., Sekine, S., Nishiyama, Y., Horikoshi, N. & Kurumizaka, H. Structural and biochemical analyses of monoubiquitinated human histones H2B and H4. Open Biol. 6, 10.1098/rsob.160090 (2016) .

  17. Paterson, Y., Englander, S.W. & Roder, H. An antibody binding site on cytochrome c defined by hydrogen exchange and two-dimensional NMR. Science 249, 755–759 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Raschke, T.M. & Marqusee, S. Hydrogen exchange studies of protein structure. Curr. Opin. Biotechnol. 9, 80–86 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Englander, S.W. Protein folding intermediates and pathways studied by hydrogen exchange. Annu. Rev. Biophys. Biomol. Struct. 29, 213–238 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, Y.Z., Paterson, Y. & Roder, H. Rapid amide proton exchange rates in peptides and proteins measured by solvent quenching and two-dimensional NMR. Protein Sci. 4, 804–814 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hoshino, M. et al. Mapping the core of the beta(2)-microglobulin amyloid fibril by H/D exchange. Nat. Struct. Biol. 9, 332–336 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Kato, H., Gruschus, J., Ghirlando, R., Tjandra, N. & Bai, Y. Characterization of the N-terminal tail domain of histone H3 in condensed nucleosome arrays by hydrogen exchange and NMR. J. Am. Chem. Soc. 131, 15104–15105 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chatterjee, C., McGinty, R.K., Fierz, B. & Muir, T.W. Disulfide-directed histone ubiquitylation reveals plasticity in hDot1L activation. Nat. Chem. Biol. 6, 267–269 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Shah, N.H., Dann, G.P., Vila-Perelló, M., Liu, Z. & Muir, T.W. Ultrafast protein splicing is common among cyanobacterial split inteins: implications for protein engineering. J. Am. Chem. Soc. 134, 11338–11341 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dyer, P.N. et al. Reconstitution of nucleosome core particles from recombinant histones and DNA. Methods Enzymol. 375, 23–44 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Pan, Y. & Briggs, M.S. Hydrogen exchange in native and alcohol forms of ubiquitin. Biochemistry 31, 11405–11412 (1992).

    Article  CAS  PubMed  Google Scholar 

  27. Going, C.C., Xia, Z. & Williams, E.R. Real-time HD exchange kinetics of proteins from buffered aqueous solution with electrothermal supercharging and top-down tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 27, 1019–1027 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schwarz, P.M., Felthauser, A., Fletcher, T.M. & Hansen, J.C. Reversible oligonucleosome self-association: dependence on divalent cations and core histone tail domains. Biochemistry 35, 4009–4015 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Shogren-Knaak, M. et al. Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311, 844–847 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Chin, J.W., Martin, A.B., King, D.S., Wang, L. & Schultz, P.G. Addition of a photocrosslinking amino acid to the genetic code of Escherichia coli. Proc. Natl. Acad. Sci. USA 99, 11020–11024 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Galardy, R.E., Craig, L.C. & Printz, M.P. Benzophenone triplet: a new photochemical probe of biological ligand–receptor interactions. Nat. New Biol. 242, 127–128 (1973).

    Article  CAS  PubMed  Google Scholar 

  32. Song, F. et al. Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units. Science 344, 376–380 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Zheng, C., Lu, X., Hansen, J.C. & Hayes, J.J. Salt-dependent intra- and internucleosomal interactions of the H3 tail domain in a model oligonucleosomal array. J. Biol. Chem. 280, 33552–33557 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Nishino, Y. et al. Human mitotic chromosomes consist predominantly of irregularly folded nucleosome fibres without a 30-nm chromatin structure. EMBO J. 31, 1644–1653 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Joti, Y. et al. Chromosomes without a 30-nm chromatin fiber. Nucleus 3, 404–410 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Maeshima, K., Imai, R., Tamura, S. & Nozaki, T. Chromatin as dynamic 10-nm fibers. Chromosoma 123, 225–237 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Maeshima, K. et al. Nucleosomal arrays self-assemble into supramolecular globular structures lacking 30-nm fibers. EMBO J. 35, 1115–1132 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nakamura, K. et al. Regulation of homologous recombination by RNF20-dependent H2B ubiquitination. Mol. Cell 41, 515–528 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Moyal, L. et al. Requirement of ATM-dependent monoubiquitylation of histone H2B for timely repair of DNA double-strand breaks. Mol. Cell 41, 529–542 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Roscoe, B.P., Thayer, K.M., Zeldovich, K.B., Fushman, D. & Bolon, D.N. Analyses of the effects of all ubiquitin point mutants on yeast growth rate. J. Mol. Biol. 425, 1363–1377 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Batta, K., Zhang, Z., Yen, K., Goffman, D.B. & Pugh, B.F. Genome-wide function of H2B ubiquitylation in promoter and genic regions. Genes Dev. 25, 2254–2265 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vijay-Kumar, S., Bugg, C.E. & Cook, W.J. Structure of ubiquitin refined at 1.8 A resolution. J. Mol. Biol. 194, 531–544 (1987).

    Article  CAS  PubMed  Google Scholar 

  43. Luger, K., Mäder, A.W., Richmond, R.K., Sargent, D.F. & Richmond, T.J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251–260 (1997).

    CAS  PubMed  Google Scholar 

  44. Pettersen, E.F. et al. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS  PubMed  Google Scholar 

  45. Luger, K., Rechsteiner, T.J., Flaus, A.J., Waye, M.M. & Richmond, T.J. Characterization of nucleosome core particles containing histone proteins made in bacteria. J. Mol. Biol. 272, 301–311 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Flaus, A. & Richmond, T.J. Positioning and stability of nucleosomes on MMTV 3′LTR sequences. J. Mol. Biol. 275, 427–441 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Farrell, I.S., Toroney, R., Hazen, J.L., Mehl, R.A. & Chin, J.W. Photo-cross-linking interacting proteins with a genetically encoded benzophenone. Nat. Methods 2, 377–384 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Young, T.S., Ahmad, I., Yin, J.A. & Schultz, P.G. An enhanced system for unnatural amino acid mutagenesis in E. coli. J. Mol. Biol. 395, 361–374 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Dorigo, B., Schalch, T., Bystricky, K. & Richmond, T.J. Chromatin fiber folding: requirement for the histone H4 N-terminal tail. J. Mol. Biol. 327, 85–96 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  PubMed  Google Scholar 

  51. Goddard, T.D. & Kneller, D.G. SPARKY 3. (University of California, San Francisco, 2008).

  52. Ueda, T., Chou, H., Kawase, T., Shirakawa, H. & Yoshida, M. Acidic C-tail of HMGB1 is required for its target binding to nucleosome linker DNA and transcription stimulation. Biochemistry 43, 9901–9908 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Müller, I. Pelczer, B. Fierz, L. Guerra, N. Shah, S. Kilic, M. Holt, U. Nguyen, J. Bos and K. Jani for stimulating discussions and help regarding the preparation of materials. This work was funded by US National Institutes of Health grant R01-GM107047 to T.W.M.

Author information

Authors and Affiliations

Authors

Contributions

G.T.D. designed experiments, prepared materials, performed H/D exchange and NMR experiments, compaction assays and crosslinking experiments, analyzed data and wrote the manuscript; K.G. prepared materials, performed compaction assays and analyzed data; T.W.M. designed experiments, analyzed data and wrote the manuscript.

Corresponding author

Correspondence to Tom W Muir.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Table 1 and Figures 1–17. (PDF 8031 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Debelouchina, G., Gerecht, K. & Muir, T. Ubiquitin utilizes an acidic surface patch to alter chromatin structure. Nat Chem Biol 13, 105–110 (2017). https://doi.org/10.1038/nchembio.2235

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2235

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing