Tunable thermal bioswitches for in vivo control of microbial therapeutics

Abstract

Temperature is a unique input signal that could be used by engineered microbial therapeutics to sense and respond to host conditions or spatially targeted external triggers such as focused ultrasound. To enable these possibilities, we present two families of tunable, orthogonal, temperature-dependent transcriptional repressors providing switch-like control of bacterial gene expression at thresholds spanning the biomedically relevant range of 32–46 °C. We integrate these molecular bioswitches into thermal logic circuits and demonstrate their utility in three in vivo microbial therapy scenarios, including spatially precise activation using focused ultrasound, modulation of activity in response to a host fever, and self-destruction after fecal elimination to prevent environmental escape. This technology provides a critical capability for coupling endogenous or applied thermal signals to cellular function in basic research, biomedical and industrial applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: High-performance thermal bioswitches.
Figure 2: Tuning the transition temperature of thermal bioswitches.
Figure 3: Thermal logic circuits.
Figure 4: Remote control of bacterial agents using focused ultrasound.
Figure 5: Programmed responses to mammalian host temperature.

References

  1. 1

    Ford, T.J. & Silver, P.A. Synthetic biology expands chemical control of microorganisms. Curr. Opin. Chem. Biol. 28, 20–28 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Fischbach, M.A., Bluestone, J.A. & Lim, W.A. Cell-based therapeutics: the next pillar of medicine. Sci. Transl. Med. 5, 179ps177 (2013).

    Article  CAS  Google Scholar 

  3. 3

    Steidler, L. et al. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 289, 1352–1355 (2000).

    Article  CAS  Google Scholar 

  4. 4

    Daniel, C., Roussel, Y., Kleerebezem, M. & Pot, B. Recombinant lactic acid bacteria as mucosal biotherapeutic agents. Trends Biotechnol. 29, 499–508 (2011).

    Article  CAS  Google Scholar 

  5. 5

    Claesen, J. & Fischbach, M.A. Synthetic microbes as drug delivery systems. ACS Synth. Biol. 4, 358–364 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Wells, J.M. & Mercenier, A. Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria. Nat. Rev. Microbiol. 6, 349–362 (2008).

    Article  CAS  Google Scholar 

  7. 7

    Courbet, A., Endy, D., Renard, E., Molina, F. & Bonnet, J. Detection of pathological biomarkers in human clinical samples via amplifying genetic switches and logic gates. Sci. Transl. Med. 7, 289ra283 (2015).

    Article  CAS  Google Scholar 

  8. 8

    Danino, T. et al. Programmable probiotics for detection of cancer in urine. Sci. Transl. Med. 7, 289ra28 (2015).

    Article  CAS  Google Scholar 

  9. 9

    Kotula, J.W. et al. Programmable bacteria detect and record an environmental signal in the mammalian gut. Proc. Natl. Acad. Sci. USA 111, 4838–4843 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Archer, E.J., Robinson, A.B. & Süel, G.M. Engineered E. coli that detect and respond to gut inflammation through nitric oxide sensing. ACS Synth. Biol. 1, 451–457 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Ntziachristos, V. Going deeper than microscopy: the optical imaging frontier in biology. Nat. Methods 7, 603–614 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Haar, G.T. & Coussios, C. High intensity focused ultrasound: physical principles and devices. Int. J. Hyperthermia 23, 89–104 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13

    Huang, X., El-Sayed, I.H., Qian, W. & El-Sayed, M.A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128, 2115–2120 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Thiesen, B. & Jordan, A. Clinical applications of magnetic nanoparticles for hyperthermia. Int. J. Hyperthermia 24, 467–474 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Zhao, K., Liu, M. & Burgess, R.R. The global transcriptional response of Escherichia coli to induced sigma 32 protein involves sigma 32 regulon activation followed by inactivation and degradation of sigma 32 in vivo. J. Biol. Chem. 280, 17758–17768 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    de Marco, A., Vigh, L., Diamant, S. & Goloubinoff, P. Native folding of aggregation-prone recombinant proteins in Escherichia coli by osmolytes, plasmid- or benzyl alcohol-overexpressed molecular chaperones. Cell Stress Chaperones 10, 329–339 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Inda, M.E. et al. A lipid-mediated conformational switch modulates the thermosensing activity of DesK. Proc. Natl. Acad. Sci. USA 111, 3579–3584 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Kortmann, J., Sczodrok, S., Rinnenthal, J., Schwalbe, H. & Narberhaus, F. Translation on demand by a simple RNA-based thermosensor. Nucleic Acids Res. 39, 2855–2868 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Neupert, J., Karcher, D. & Bock, R. Design of simple synthetic RNA thermometers for temperature-controlled gene expression in Escherichia coli. Nucleic Acids Res. 36, e124 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Waldminghaus, T., Kortmann, J., Gesing, S. & Narberhaus, F. Generation of synthetic RNA-based thermosensors. Biol. Chem. 389, 1319–1326 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Hoynes-O'Connor, A., Hinman, K., Kirchner, L. & Moon, T.S. De novo design of heat-repressible RNA thermosensors in E. coli. Nucleic Acids Res. 43, 6166–6179 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Satija, R., Sen, S., Siegal-Gaskins, D. & Murray, R.M. Design of a toolbox of RNA thermometers. Preprint at bioRxiv http://dx.doi.org/10.1101/017269 (2015).

  23. 23

    Wieland, M. & Hartig, J.S. RNA quadruplex-based modulation of gene expression. Chem. Biol. 14, 757–763 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Hurme, R., Berndt, K.D., Namork, E. & Rhen, M. DNA binding exerted by a bacterial gene regulator with an extensive coiled-coil domain. J. Biol. Chem. 271, 12626–12631 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Valdez-Cruz, N.A., Caspeta, L., Pérez, N.O., Ramírez, O.T. & Trujillo-Roldán, M.A. Production of recombinant proteins in E. coli by the heat inducible expression system based on the phage lambda pL and/or pR promoters. Microb. Cell Fact. 9, 18 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Sussman, R. & Jacob, F. Sur un systeme de repression thermosensible chez le bacteriophage lambda d'Escherichia coli. C. R. Hebd. Seances Acad. Sci. 24, 1517–1519 (1962).

    Google Scholar 

  27. 27

    Wissmann, A. et al. Selection for Tn10 tet repressor binding to tet operator in Escherichia coli: isolation of temperature-sensitive mutants and combinatorial mutagenesis in the DNA binding motif. Genetics 128, 225–232 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Chao, Y.P., Chern, J.T., Wen, C.S. & Fu, H. Construction and characterization of thermo-inducible vectors derived from heat-sensitive lacI genes in combination with the T7 A1 promoter. Biotechnol. Bioeng. 79, 1–8 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    McCabe, K.M., Lacherndo, E.J., Albino-Flores, I., Sheehan, E. & Hernandez, M. LacI(Ts)-regulated expression as an in situ intracellular biomolecular thermometer. Appl. Environ. Microbiol. 77, 2863–2868 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Hurme, R., Berndt, K.D., Normark, S.J. & Rhen, M. A proteinaceous gene regulatory thermometer in Salmonella. Cell 90, 55–64 (1997).

    Article  CAS  Google Scholar 

  31. 31

    Wilson, C.J., Zhan, H., Swint-Kruse, L. & Matthews, K.S. The lactose repressor system: paradigms for regulation, allosteric behavior and protein folding. Cell. Mol. Life Sci. 64, 3–16 (2007).

    Article  CAS  Google Scholar 

  32. 32

    Bertram, R. & Hillen, W. The application of Tet repressor in prokaryotic gene regulation and expression. Microb. Biotechnol. 1, 2–16 (2008).

    CAS  PubMed  Google Scholar 

  33. 33

    Jensen, P.R., Westerhoff, H.V. & Michelsen, O. The use of lac-type promoters in control analysis. Eur. J. Biochem. 211, 181–191 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    CAS  Article  Google Scholar 

  35. 35

    Al-Bataineh, O., Jenne, J. & Huber, P. Clinical and future applications of high intensity focused ultrasound in cancer. Cancer Treat. Rev. 38, 346–353 (2012).

    Article  Google Scholar 

  36. 36

    Elias, W.J. et al. A pilot study of focused ultrasound thalamotomy for essential tremor. N. Engl. J. Med. 369, 640–648 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Deckers, R. et al. Image-guided, noninvasive, spatiotemporal control of gene expression. Proc. Natl. Acad. Sci. USA 106, 1175–1180 (2009).

    Article  Google Scholar 

  38. 38

    Fite, B.Z. et al. Magnetic resonance thermometry at 7T for real-time monitoring and correction of ultrasound induced mild hyperthermia. PLoS One 7, e35509 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    McDannold, N.J., King, R.L., Jolesz, F.A. & Hynynen, K.H. Usefulness of MR imaging-derived thermometry and dosimetry in determining the threshold for tissue damage induced by thermal surgery in rabbits. Radiology 216, 517–523 (2000).

    Article  CAS  Google Scholar 

  40. 40

    McDannold, N., Vykhodtseva, N., Jolesz, F.A. & Hynynen, K. MRI investigation of the threshold for thermally induced blood-brain barrier disruption and brain tissue damage in the rabbit brain. Magn. Reson. Med. 51, 913–923 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  41. 41

    Rudaya, A.Y., Steiner, A.A., Robbins, J.R., Dragic, A.S. & Romanovsky, A.A. Thermoregulatory responses to lipopolysaccharide in the mouse: dependence on the dose and ambient temperature. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R1244–R1252 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Pritchard, M.T. et al. Protocols for simulating the thermal component of fever: preclinical and clinical experience. Methods 32, 54–62 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Illing, A.C., Shawki, A., Cunningham, C.L. & Mackenzie, B. Substrate profile and metal-ion selectivity of human divalent metal-ion transporter-1. J. Biol. Chem. 287, 30485–30496 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Nistala, G.J., Wu, K., Rao, C.V. & Bhalerao, K.D. A modular positive feedback-based gene amplifier. J. Biol. Eng. 4, 4 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Andersen, J.B. et al. New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl. Environ. Microbiol. 64, 2240–2246 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Natori, Y., Kano, Y. & Imamoto, F. Characterization and promoter selectivity of Lactobacillus acidophilus RNA polymerase. Biochimie 70, 1765–1774 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Mimee, M., Tucker, A.C., Voigt, C.A. & Lu, T.K. Programming a human commensal bacterium, Bacteroides thetaiotaomicron, to sense and respond to stimuli in the murine gut microbiota. Cell Syst. 1, 62–71 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Tey, S.-K. Adoptive T-cell therapy: adverse events and safety switches. Clin. Transl. Immunology 3, e17 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Chan, C.T., Lee, J.W., Cameron, D.E., Bashor, C.J. & Collins, J.J. 'Deadman' and 'Passcode' microbial kill switches for bacterial containment. Nat. Chem. Biol. 12, 82–86 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Gallagher, R.R., Patel, J.R., Interiano, A.L., Rovner, A.J. & Isaacs, F.J. Multilayered genetic safeguards limit growth of microorganisms to defined environments. Nucleic Acids Res. 43, 1945–1954 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Lang, K. & Chin, J.W. Cellular incorporation of unnatural amino acids and bioorthogonal labeling of proteins. Chem. Rev. 114, 4764–4806 (2014).

    Article  CAS  Google Scholar 

  52. 52

    Handley, A., Schauer, T., Ladurner, A.G. & Margulies, C.E. Designing cell-type-specific genome-wide experiments. Mol. Cell 58, 621–631 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Grammel, M. & Hang, H.C. Chemical reporters for biological discovery. Nat. Chem. Biol. 9, 475–484 (2013).

    Article  CAS  Google Scholar 

  54. 54

    Ai, H.W., Olenych, S.G., Wong, P., Davidson, M.W. & Campbell, R.E. Hue-shifted monomeric variants of Clavularia cyan fluorescent protein: identification of the molecular determinants of color and applications in fluorescence imaging. BMC Biol. 6, 13 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Shaner, N.C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–1572 (2004).

    Article  CAS  Google Scholar 

  56. 56

    Kutrowska, B.W., Narczyk, M., Buszko, A., Bzowska, A. & Clark, P.L. Folding and unfolding of a non-fluorescent mutant of green fluorescent protein. J. Phys. Condens. Matter 19, 285223 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank J. Szablowski for assistance with focused ultrasound, A. Mukherjee, J. Bois and A. Gluhovsky for helpful discussions, and S. Zemsky, R. Rezvani, Y. Jiang and G. Ha for experimental assistance. D.I.P. was supported by the NIH fellowship for Predoctoral Training in Biology and Chemistry (T32GM007616). M.H.A. was supported by an NSF graduate research fellowship and the Paul and Daisy Soros Fellowship for New Americans. This work was supported by a DARPA Young Faculty Award (D14AP00050), the Weston Havens Foundation, a Burroughs Wellcome Career Award at the Scientific Interface and the Heritage Medical Research Institute (M.G.S.).

Author information

Affiliations

Authors

Contributions

D.I.P. co-conceived and planned the study, generated genetic constructs, evaluated their performance in vitro and in vivo, and co-wrote the manuscript. M.H.A. co-conceived and planned the study, generated genetic constructs, evaluated their performance in vitro and in vivo, and co-wrote the manuscript. B.A.M. generated genetic constructs and evaluated their performance in vitro. A.L.-G. conducted in vivo experiments. M.G.S. co-conceived and supervised the study and co-wrote the manuscript. All authors provided input on the final manuscript.

Corresponding author

Correspondence to Mikhail G Shapiro.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–3 and Supplementary Figures 1–7. (PDF 3552 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Piraner, D., Abedi, M., Moser, B. et al. Tunable thermal bioswitches for in vivo control of microbial therapeutics. Nat Chem Biol 13, 75–80 (2017). https://doi.org/10.1038/nchembio.2233

Download citation

Further reading

Search

Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing