Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

A multi-step peptidolytic cascade for amino acid recovery in chloroplasts

Abstract

Plastids (including chloroplasts) are subcellular sites for a plethora of proteolytic reactions, required in functions ranging from protein biogenesis to quality control. Here we show that peptides generated from pre-protein maturation within chloroplasts of Arabidopsis thaliana are degraded to amino acids by a multi-step peptidolytic cascade consisting of oligopeptidases and aminopeptidases, effectively allowing the recovery of single amino acids within these organelles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Degradation of a chloroplastic targeting peptide to amino acids.
Figure 2: Analysis of peptide degradation to amino acids in stromal samples isolated from Arabidopsis Col-0, oligopeptidase and aminopeptidase mutants.

Similar content being viewed by others

References

  1. Zimorski, V., Ku, C., Martin, W.F. & Gould, S.B. Curr. Opin. Microbiol. 22, 38–48 (2014).

    Article  CAS  Google Scholar 

  2. Schleiff, E. & Becker, T. Nat. Rev. Mol. Cell Biol. 12, 48–59 (2011).

    Article  CAS  Google Scholar 

  3. Teixeira, P.F. & Glaser, E. Biochim. Biophys. Acta 1833, 360–370 (2013).

    Article  CAS  Google Scholar 

  4. Kmiec, B., Teixeira, P.F. & Glaser, E. Trends Plant Sci. 19, 771–778 (2014).

    Article  CAS  Google Scholar 

  5. Johnson, K.A. et al. EMBO J. 25, 1977–1986 (2006).

    Article  CAS  Google Scholar 

  6. Kmiec, B. et al. Proc. Natl. Acad. Sci. USA 110, E3761–E3769 (2013).

    Article  CAS  Google Scholar 

  7. Stahl, A. et al. J. Biol. Chem. 277, 41931–41939 (2002).

    Article  CAS  Google Scholar 

  8. Bhushan, S. et al. EMBO Rep. 4, 1073–1078 (2003).

    Article  CAS  Google Scholar 

  9. Lowther, W.T. & Matthews, B.W. Chem. Rev. 102, 4581–4608 (2002).

    Article  CAS  Google Scholar 

  10. Beninga, J., Rock, K.L. & Goldberg, A.L. J. Biol. Chem. 273, 18734–18742 (1998).

    Article  CAS  Google Scholar 

  11. Kelly, J.A., Neidle, E.L. & Neidle, A. J. Neurochem. 40, 1727–1734 (1983).

    Article  CAS  Google Scholar 

  12. Stoltze, L. et al. Nat. Immunol. 1, 413–418 (2000).

    Article  CAS  Google Scholar 

  13. Walling, L.L. Curr. Opin. Plant Biol. 9, 227–233 (2006).

    Article  CAS  Google Scholar 

  14. van Wijk, K.J. Annu. Rev. Plant Biol. 66, 75–111 (2015).

    Article  CAS  Google Scholar 

  15. Ferro, M. et al. Mol. Cell. Proteomics 9, 1063–1084 (2010).

    Article  CAS  Google Scholar 

  16. Kleffmann, T. et al. Curr. Biol. 14, 354–362 (2004).

    Article  CAS  Google Scholar 

  17. Narváez-Vásquez, J., Tu, C.J., Park, S.Y. & Walling, L.L. Planta 227, 341–351 (2008).

    Article  Google Scholar 

  18. Rowland, E., Kim, J., Bhuiyan, N.H. & van Wijk, K.J. Plant Physiol. 169, 1881–1896 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Law, S.R. et al. Plant Physiol. 158, 1610–1627 (2012).

    Article  CAS  Google Scholar 

  20. Bhushan, S., Kuhn, C., Berglund, A.K., Roth, C. & Glaser, E. FEBS Lett. 580, 3966–3972 (2006).

    Article  CAS  Google Scholar 

  21. Polge, C. et al. J. Biol. Chem. 284, 35412–35424 (2009).

    Article  CAS  Google Scholar 

  22. Saric, T., Graef, C.I. & Goldberg, A.L. J. Biol. Chem. 279, 46723–46732 (2004).

    Article  CAS  Google Scholar 

  23. Vabulas, R.M. & Hartl, F.U. Science 310, 1960–1963 (2005).

    Article  CAS  Google Scholar 

  24. Carrie, C. et al. Plant J. 57, 1128–1139 (2009).

    Article  CAS  Google Scholar 

  25. Aronsson, H. & Jarvis, P. FEBS Lett. 529, 215–220 (2002).

    Article  CAS  Google Scholar 

  26. Hall, M., Mishra, Y. & Schröder, W.P. Methods Mol. Biol. 775, 207–222 (2011).

    Article  CAS  Google Scholar 

  27. Murcha, M.W., Elhafez, D., Millar, A.H. & Whelan, J. J. Biol. Chem. 280, 16476–16483 (2005).

    Article  CAS  Google Scholar 

  28. Teixeira, P.F., Branca, R.M., Kmiec, B. & Glaser, E. Methods Mol. Biol. 1305, 123–130 (2015).

    Article  CAS  Google Scholar 

  29. Zybailov, B. et al. PLoS One 3, e1994 (2008).

    Article  Google Scholar 

  30. Drag, M., Bogyo, M., Ellman, J.A. & Salvesen, G.S. J. Biol. Chem. 285, 3310–3318 (2010).

    Article  CAS  Google Scholar 

  31. Kmiec, B., Teixeira, P.F. & Glaser, E. Biochimie 100, 167–170 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Swedish Metabolomics Centre (Umeå) for assistance with amino acid quantification, H. Fu (Academia Sinica) for Rpn10 antisera and U. Langel (Stockholm University) for the galanin peptide. This study was supported by grants from the Swedish Research Council to E.G. (DN2015-04833) and J.L. (DN2012-5145), from the Sigurd och Elsa Goljes Minne Foundation to P.F.T. and B.K., the ARC future fellowship to M.W.M., ARC Discovery program grant DP130102384 to J.W., Polish National Science Centre for Scientific Research grant NN401042838 to M.D. and the STINT Institutional grant for cooperation between the laboratories of E.G. and J.W.

Author information

Authors and Affiliations

Authors

Contributions

P.F.T. designed the study and performed peptidase assays. B.K. selected and characterized Arabidopsis mutants and performed cellular fractionation experiments. R.M.M.B. carried out peptide MS analysis. M.W.M. performed protein localization experiments. A.B. carried out aminopeptidase profiling. P.F.T., B.K., R.M.M.B., A.B., M.W.M., A.I., J.W., M.D., J.L. and E.G. analyzed, discussed and interpreted the results. P.F.T. and B.K. wrote the paper with input from all coauthors.

Corresponding author

Correspondence to Pedro F Teixeira.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–7 and Supplementary Tables 1–4. (PDF 1906 kb)

Supplementary Data Set 1

Original mass spectrometry data. (XLSX 56 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teixeira, P., Kmiec, B., Branca, R. et al. A multi-step peptidolytic cascade for amino acid recovery in chloroplasts. Nat Chem Biol 13, 15–17 (2017). https://doi.org/10.1038/nchembio.2227

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2227

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing