Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Small-molecule factor D inhibitors targeting the alternative complement pathway

Abstract

Complement is a key component of the innate immune system, recognizing pathogens and promoting their elimination. Complement component 3 (C3) is the central component of the system. Activation of C3 can be initiated by three distinct routes—the classical, the lectin and the alternative pathways—with the alternative pathway also acting as an amplification loop for the other two pathways. The protease factor D (FD) is essential for this amplification process, which, when dysregulated, predisposes individuals to diverse disorders including age-related macular degeneration and paroxysmal nocturnal hemoglobinuria (PNH). Here we describe the identification of potent and selective small-molecule inhibitors of FD. These inhibitors efficiently block alternative pathway (AP) activation and prevent both C3 deposition onto, and lysis of, PNH erythrocytes. Their oral administration inhibited lipopolysaccharide-induced AP activation in FD-humanized mice. These data demonstrate the feasibility of inhibiting the AP with small-molecule antagonists and support the development of FD inhibitors for the treatment of complement-mediated diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure-based evolution of reversible small-molecule human FD inhibitors.
Figure 2: Identification and characterization of potent and selective human FD inhibitor 6.
Figure 3: Generation of human factor D knock-in mice.
Figure 4: Inhibitor (6) blocks LPS-induced systemic and ocular AP activation in C57Bl/6 mice expressing human FD.
Figure 5: Inhibitors of FD prevent C3 deposition on and hemolysis of PNH erythrocytes.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

NCBI Reference Sequence

References

  1. Walport, M.J. Complement. Second of two parts. N. Engl. J. Med. 344, 1140–1144 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Ricklin, D., Hajishengallis, G., Yang, K. & Lambris, J.D. Complement: a key system for immune surveillance and homeostasis. Nat. Immunol. 11, 785–797 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Thurman, J.M. & Holers, V.M. The central role of the alternative complement pathway in human disease. J. Immunol. 176, 1305–1310 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Holers, V.M. The spectrum of complement alternative pathway-mediated diseases. Immunol. Rev. 223, 300–316 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Risitano, A.M. Paroxysmal nocturnal hemoglobinuria and the complement system: recent insights and novel anticomplement strategies. Adv. Exp. Med. Biol. 735, 155–172 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Zipfel, P.F. et al. The role of complement in C3 glomerulopathy. Mol. Immunol. 67, 21–30 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Zipfel, P.F., Heinen, S., Józsi, M. & Skerka, C. Complement and diseases: defective alternative pathway control results in kidney and eye diseases. Mol. Immunol. 43, 97–106 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Lesavre, P.H. & Müller-Eberhard, H.J. Mechanism of action of factor D of the alternative complement pathway. J. Exp. Med. 148, 1498–1509 (1978).

    Article  CAS  PubMed  Google Scholar 

  9. Forneris, F. et al. Structures of C3b in complex with factors B and D give insight into complement convertase formation. Science 330, 1816–1820 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Volanakis, J.E. & Narayana, S.V.L. Complement factor D, a novel serine protease. Protein Sci. 5, 553–564 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schechter, I. & Berger, A. On the size of the active site in proteases. I. Papain. Biochem. Biophys. Res. Commun. 27, 157–162 (1967).

    Article  CAS  PubMed  Google Scholar 

  12. Kam, C.M. et al. Human complement proteins D, C2, and B. Active site mapping with peptide thioester substrates. J. Biol. Chem. 262, 3444–3451 (1987).

    CAS  PubMed  Google Scholar 

  13. Ikari, N., Sakai, Y., Hitomi, Y. & Fujii, S. New synthetic inhibitor to the alternative complement pathway. Immunology 49, 685–691 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Cole, L.B., Kilpatrick, J.M., Chu, N. & Babu, Y.S. Structure of 3,4-dichloroisocoumarin-inhibited factor D. Acta Crystallogr. D Biol. Crystallogr. 54, 711–717 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Morikis, D. & Lambris, J.D. Structural aspects and design of low-molecular-mass complement inhibitors. Biochem. Soc. Trans. 30, 1026–1036 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Loyet, K.M. et al. Complement inhibition in cynomolgus monkeys by anti-factor d antigen-binding fragment for the treatment of an advanced form of dry age-related macular degeneration. J. Pharmacol. Exp. Ther. 351, 527–537 (2014).

    Article  PubMed  CAS  Google Scholar 

  17. Halgren, T.A. et al. Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem. 47, 1750–1759 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Bodenhausen, G. & Ruben, D.J. Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy. Chem. Phys. Lett. 69, 185–189 (1980).

    Article  CAS  Google Scholar 

  19. Pangburn, M.K. & Müller-Eberhard, H.J. The C3 convertase of the alternative pathway of human complement. Enzymic properties of the bimolecular proteinase. Biochem. J. 235, 723–730 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Murray, C.W. & Blundell, T.L. Structural biology in fragment-based drug design. Curr. Opin. Struct. Biol. 20, 497–507 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Hann, M.M., Leach, A.R. & Harper, G. Molecular complexity and its impact on the probability of finding leads for drug discovery. J. Chem. Inf. Comput. Sci. 41, 856–864 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Dalvit, C. et al. Identification of compounds with binding affinity to proteins via magnetization transfer from bulk water. J. Biomol. NMR 18, 65–68 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Min, H.Y. & Spiegelman, B.M. Adipsin, the adipocyte serine protease: gene structure and control of expression by tumor necrosis factor. Nucleic Acids Res. 14, 8879–8892 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Scholl, H.P. et al. Systemic complement activation in age-related macular degeneration. PLoS One 3, e2593 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Xu, Y. et al. Complement activation in factor D-deficient mice. Proc. Natl. Acad. Sci. USA 98, 14577–14582 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Reynolds, R. et al. Plasma complement components and activation fragments: associations with age-related macular degeneration genotypes and phenotypes. Invest. Ophthalmol. Vis. Sci. 50, 5818–5827 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hecker, L.A. et al. Genetic control of the alternative pathway of complement in humans and age-related macular degeneration. Hum. Mol. Genet. 19, 209–215 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Ristau, T. et al. Impact of the common genetic associations of age-related macular degeneration upon systemic complement component C3d levels. PLoS One 9, e93459 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Fishelson, Z., Horstmann, R.D. & Müller-Eberhard, H.J. Regulation of the alternative pathway of complement by pH. J. Immunol. 138, 3392–3395 (1987).

    CAS  PubMed  Google Scholar 

  30. Hillmen, P. et al. Long-term safety and efficacy of sustained eculizumab treatment in patients with paroxysmal nocturnal haemoglobinuria. Br. J. Haematol. 162, 62–73 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Risitano, A.M. et al. Complement fraction 3 binding on erythrocytes as additional mechanism of disease in paroxysmal nocturnal hemoglobinuria patients treated by eculizumab. Blood 113, 4094–4100 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Skolnik, S. et al. Towards prediction of in vivo intestinal absorption using a 96-well Caco-2 assay. J. Pharm. Sci. 99, 3246–3265 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Ram, S., Lewis, L.A. & Rice, P.A. Infections of people with complement deficiencies and patients who have undergone splenectomy. Clin. Microbiol. Rev. 23, 740–780 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Maeda, H. et al. 2,4-Dinitrobenzenesulfonyl fluoresceins as fluorescent alternatives to Ellman's reagent in thiol-quantification enzyme assays. Angew. Chem. Int. Ed. Engl. 44, 2922–2925 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Harris, C.L., Lublin, D.M. & Morgan, B.P. Efficient generation of monoclonal antibodies for specific protein domains using recombinant immunoglobulin fusion proteins: pitfalls and solutions. J. Immunol. Methods 268, 245–258 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    CAS  Google Scholar 

  37. Vagin, A. & Teplyakov, A. MOLREP: an automated program for molecular replacement. J. Appl. Cryst. 30, 1022–1025 (1997).

    Article  CAS  Google Scholar 

  38. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Cryst. 26, 795–800 (1993).

    Article  CAS  Google Scholar 

  39. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  41. Blanc, E. et al. Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT. Acta Crystallogr. D Biol. Crystallogr. 60, 2210–2221 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. The PyMOL Molecular Graphics System V.1.7.6.5. (Schrödinger, LLC, 2002).

  43. Mori, S., Abeygunawardana, C., Johnson, M.O. & van Zijl, P.C.M. Improved sensitivity of HSQC spectra of exchanging protons at short interscan delays using a new fast HSQC (FHSQC) detection scheme that avoids water saturation. J. Magn. Reson. B. 108, 94–98 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Piotto, M., Saudek, V. & Sklenár, V. Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J. Biomol. NMR 2, 661–665 (1992).

    Article  CAS  PubMed  Google Scholar 

  45. Sklenar, V., Piotto, M., Leppik, R. & Saudek, V. Gradient-tailored water suppression for 1H–15N HSQC experiments optimized to retain full sensitivity. J. Magn. Reson. A 102, 241–245 (1993).

    Article  CAS  Google Scholar 

  46. Hwang, T.L. & Shaka, A.J. Water suppression that works. Excitation sculpting using arbitrary waveforms and pulsed field gradients. J. Magn. Reson. A 112, 275–279 (1995).

    Article  CAS  Google Scholar 

  47. Shelley, J.C. et al. Epik: a software program for pK(a) prediction and protonation state generation for drug-like molecules. J. Comput. Aided Mol. Des. 21, 681–691 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Schwenk, F., Baron, U. & Rajewsky, K. A cre-transgenic mouse strain for the ubiquitous deletion of loxP-flanked gene segments including deletion in germ cells. Nucleic Acids Res. 23, 5080–5081 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jägle, U., Gasser, J.A., Müller, M. & Kinzel, B. Conditional transgene expression mediated by the mouse β-actin locus. Genesis 45, 659–666 (2007).

    Article  PubMed  CAS  Google Scholar 

  50. Ferreira, V.P. & Pangburn, M.K. Factor H mediated cell surface protection from complement is critical for the survival of PNH erythrocytes. Blood 110, 2190–2192 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank T. Zoller for the preparation of the proline-based compound library, J. Wirsching, T. Doll and A. Isken for their assistance in generating the human FD knock-in mice, N. Buchanan for coordinating the maintenance of the mouse colony, F. Zink for assistance in preparing FD and KLK7 inhibitor complex crystals, S. Kapps for preparation of 15N-labeled human FD, C. Towler for small molecule crystallization experiments, C. Dentel and F. Tritsch for chemical syntheses, U. Argikar, A. Brown, S. Bailey and G. Marsh for pharmacokinetic and bioanalytical support, A. De Erkenez for performing human whole blood assays, and L. Ferrara for performing the AP hemolytic assay.

Author information

Authors and Affiliations

Authors

Contributions

N.O. and A.M.S. solved the structures by X-ray crystallography. S. Randl, U.H., A.V., E.L. and J.M. designed the FD structure-based inhibitors. S.D., C.D. and K.F. synthesized compounds. S. Rüdisser and P.E. performed NMR experiments for screening and binding affinity measurements. N.H. and P.E. conducted SPR experiments. F.C. generated the biochemical assay data. A.S. and J.W. performed the PNH surrogate assay and analyzed the data. A.M.R. performed the assays using erthrocytes from PNH patient and analyzed the data. S.B., B.K. and F.A.K. generated the human FD knock-in mice. B.G. and J.E. produced recombinant proteins. T.G. designed and interpreted pharmacokinetic studies. O.D. and S.-M.L. performed the in vivo studies in mice. S.F. and B.J. conceived experiments and supervised part of the work. J.M., J.E., A.S., R.H. and K.A. conceived experiments, supervised the work, and wrote the manuscript.

Corresponding authors

Correspondence to Jürgen Maibaum or Karen Anderson.

Ethics declarations

Competing interests

All authors, with the exception of A.M.R., are former or current employees of Novartis and may hold Novartis stock. Experiments reported herein conducted by A.M.R. were funded by Novartis.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–4 and Supplementary Figures 1–6. (PDF 1383 kb)

Supplementary Note

Synthetic Procedures. (PDF 733 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maibaum, J., Liao, SM., Vulpetti, A. et al. Small-molecule factor D inhibitors targeting the alternative complement pathway. Nat Chem Biol 12, 1105–1110 (2016). https://doi.org/10.1038/nchembio.2208

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2208

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing