Abstract
Here we present a natural product discovery approach, whereby structures are bioinformatically predicted from primary sequence and produced by chemical synthesis (synthetic-bioinformatic natural products, syn-BNPs), circumventing the need for bacterial culture and gene expression. When we applied the approach to nonribosomal peptide synthetase gene clusters from human-associated bacteria, we identified the humimycins. These antibiotics inhibit lipid II flippase and potentiate β-lactam activity against methicillin-resistant Staphylococcus aureus in mice, potentially providing a new treatment regimen.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
HypoRiPPAtlas as an Atlas of hypothetical natural products for mass spectrometry database search
Nature Communications Open Access 14 July 2023
-
Lapcin, a potent dual topoisomerase I/II inhibitor discovered by soil metagenome guided total chemical synthesis
Nature Communications Open Access 11 February 2022
-
Mining and unearthing hidden biosynthetic potential
Nature Communications Open Access 23 June 2021
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Newman, D.J. & Cragg, G.M. J. Nat. Prod. 79, 629–661 (2016).
Charlop-Powers, Z., Milshteyn, A. & Brady, S.F. Curr. Opin. Microbiol. 19, 70–75 (2014).
Piel, J. Annu. Rev. Microbiol. 65, 431–453 (2011).
Rutledge, P.J. & Challis, G.L. Nat. Rev. Microbiol. 13, 509–523 (2015).
Qin, J. et al. Nature 464, 59–65 (2010).
Turnbaugh, P.J. et al. Nature 457, 480–484 (2009).
Charlop-Powers, Z. et al. eLife 4, e05048 (2015).
Doroghazi, J.R. et al. Nat. Chem. Biol. 10, 963–968 (2014).
Stachelhaus, T., Mootz, H.D. & Marahiel, M.A. Chem. Biol. 6, 493–505 (1999).
Minowa, Y., Araki, M. & Kanehisa, M. J. Mol. Biol. 368, 1500–1517 (2007).
Rottig, M. et al. Nucleic Acids Res. 39, W362–W367 (2011).
Weber, T. et al. Nucleic Acids Res. 43, W237–W243 (2015).
Rausch, C., Hoof, I., Weber, T., Wohlleben, W. & Huson, D.H. BMC Evol. Biol. 7, 78 (2007).
Kitagawa, W. & Tamura, T. Microbes Environ. 23, 167–171 (2008).
D'Argenio, V. & Salvatore, F. Clin. Chim. Acta 451 Pt A: 97–102 (2015).
Sham, L.T. et al. Science 345, 220–222 (2014).
Sewell, E.W. & Brown, E.D. J. Antibiot. 67, 43–51 (2014).
Lee, S.H. et al. Sci. Transl. Med. 8, 329ra332 (2016).
Huber, J. et al. Chem. Biol. 16, 837–848 (2009).
Kraal, L., Abubucker, S., Kota, K., Fischbach, M.A. & Mitreva, M. PLoS One 9, e97279 (2014).
Rasmussen, T.T., Kirkeby, L.P., Poulsen, K., Reinholdt, J. & Kilian, M. APMIS 108, 663–675 (2000).
Graham, J.E. et al. Invest. Ophthalmol. Vis. Sci. 48, 5616–5623 (2007).
Lepage, P. et al. Gastroenterology 141, 227–236 (2011).
Jostins, L. et al. Nature 491, 119–124 (2012).
Kohli, R.M., Walsh, C.T. & Burkart, M.D. Nature 418, 658–661 (2002).
Human Microbiome Project Consortium. Nature 486, 215–221 (2012).
Chen, T. et al. Database (Oxford) 2010, baq013 (2010).
Blin, K. et al. Nucleic Acids Res. 41, W204–W212 (2013).
Wang, S.S. J. Am. Chem. Soc. 95, 1328–1333 (1973).
Cockerill, F.R. et al. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard—Ninth Edition (Clinical and Laboratory Standards Institute, Wayne, PA, 2012).
Hall, M.J., Middleton, R.F. & Westmacott, D. J. Antimicrob. Chemother. 11, 427–433 (1983).
Garrison, E. & Marth, G. arXiv https://arxiv.org/abs/1207.3907 (2012).
Corrigan, R.M. & Foster, T.J. Plasmid 61, 126–129 (2009).
Acknowledgements
We thank members of the Fischetti (MRSA), Tomasz (MRSA) and Marraffini (S. aureus, S. delphini, S. intermedius, and S. pseudo-intermedius) laboratories at the Rockefeller University for providing strains. This work was supported by the Rainin Foundation, US National Institutes of Health grants U19AI109713 (D.S.P.) and F32 29 AI110029 (Z.C.-P.).
Author information
Authors and Affiliations
Contributions
S.F.B. conceived of the project. J.C. and X.V.-F. carried out antibiosis assays, spectrum of activity screening and resistant mutant selection. D.I., H.A.Z., R.G.-M., M.J., S.S. and J.S.F. carried out peptide synthesis on large scale. M.T. carried out genome sequencing. L.J.C. and E.A.G. screened anaerobic bacteria. B.V.B.R. and Z.C.-P. carried out bioinformatic analysis. S.P. and D.S.P. carried out mouse studies.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Text and Figures
Supplementary Results, Supplementary Figures 1–7 and Supplementary Tables 1–6. (PDF 2007 kb)
Rights and permissions
About this article
Cite this article
Chu, J., Vila-Farres, X., Inoyama, D. et al. Discovery of MRSA active antibiotics using primary sequence from the human microbiome. Nat Chem Biol 12, 1004–1006 (2016). https://doi.org/10.1038/nchembio.2207
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nchembio.2207
This article is cited by
-
HypoRiPPAtlas as an Atlas of hypothetical natural products for mass spectrometry database search
Nature Communications (2023)
-
A naturally inspired antibiotic to target multidrug-resistant pathogens
Nature (2022)
-
Lapcin, a potent dual topoisomerase I/II inhibitor discovered by soil metagenome guided total chemical synthesis
Nature Communications (2022)
-
Natural products in drug discovery: advances and opportunities
Nature Reviews Drug Discovery (2021)
-
Mining and unearthing hidden biosynthetic potential
Nature Communications (2021)