Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Oxidation increases the strength of the methionine-aromatic interaction

Abstract

Oxidation of methionine disrupts the structure and function of a range of proteins, but little is understood about the chemistry that underlies these perturbations. Using quantum mechanical calculations, we found that oxidation increased the strength of the methionine-aromatic interaction motif, a driving force for protein folding and protein-protein interaction, by 0.5–1.4 kcal/mol. We found that non-hydrogen-bonded interactions between dimethyl sulfoxide (a methionine analog) and aromatic groups were enriched in both the Protein Data Bank and Cambridge Structural Database. Thermal denaturation and NMR spectroscopy experiments on model peptides demonstrated that oxidation of methionine stabilized the interaction by 0.5–0.6 kcal/mol. We confirmed the biological relevance of these findings through a combination of cell biology, electron paramagnetic resonance spectroscopy and molecular dynamics simulations on (i) calmodulin structure and dynamics, and (ii) lymphotoxin-α binding toTNFR1. Thus, the methionine-aromatic motif was a determinant of protein structural and functional sensitivity to oxidative stress.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural informatics search of the CSD and PDB and interaction energy.
Figure 2: 1H-1H rotating frame Overhauser effect NMR spectroscopy (ROESY) and chemical shift analysis of α-helical peptide mixtures of two diasteriomers containing the R and S sulfoxide of methionine.
Figure 3: REMD simulations and EPR spectroscopy measurements of CaM.
Figure 4: Oxidation of LTα, but not TNF ablated its interaction with TNFR1.
Figure 5: Molecular dynamics simulations of LTα with Met120 oxidized showed that competitive interaction of Met120 with Tyr96 prevented its interaction with Trp107.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Valley, C.C. et al. The methionine-aromatic motif plays a unique role in stabilizing protein structure. J. Biol. Chem. 287, 34979–34991 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zauhar, R.J., Colbert, C.L., Morgan, R.S. & Welsh, W.J. Evidence for a strong sulfur-aromatic interaction derived from crystallographic data. Biopolymers 53, 233–248 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Reid, K.S.C., Lindley, P.F. & Thornton, J.M. Sulphur-aromatic interactions in proteins. FEBS Lett. 190, 209–213 (1985).

    Article  CAS  Google Scholar 

  4. Pranata, J. Sulfur–Aromatic Interactions: A Computational Study of the Dimethyl Sulfide–Benzene Complex. Bioorg. Chem. 25, 213–219 (1997).

    Article  CAS  Google Scholar 

  5. Morgan, R.S. & McAdon, J.M. Predictor for sulfur-aromatic interactions in globular proteins. Int. J. Pept. Protein Res. 15, 177–180 (1980).

    Article  CAS  PubMed  Google Scholar 

  6. Morgan, R.S., Tatsch, C.E., Gushard, R.H., McAdon, J. & Warme, P.K. Chains of alternating sulfur and pi-bonded atoms in eight small proteins. Int. J. Pept. Protein Res. 11, 209–217 (1978).

    Article  CAS  PubMed  Google Scholar 

  7. Viguera, A.R. & Serrano, L. Side-chain interactions between sulfur-containing amino acids and phenylalanine in α-helices. Biochemistry 34, 8771–8779 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Shechter, Y., Burstein, Y. & Patchornik, A. Selective oxidation of methionine residues in proteins. Biochemistry 14, 4497–4503 (1975).

    Article  CAS  PubMed  Google Scholar 

  9. Hoshi, T. & Heinemann, S. Regulation of cell function by methionine oxidation and reduction. J. Physiol. (Lond.) 531, 1–11 (2001).

    Article  CAS  Google Scholar 

  10. Levine, R.L., Berlett, B.S., Moskovitz, J., Mosoni, L. & Stadtman, E.R. Methionine residues may protect proteins from critical oxidative damage. Mech. Ageing Dev. 107, 323–332 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Kim, G., Weiss, S.J. & Levine, R.L. Methionine oxidation and reduction in proteins. Biochim. Biophys. Acta 1840, 901–905 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Arakawa, T., Kita, Y. & Timasheff, S.N. Protein precipitation and denaturation by dimethyl sulfoxide. Biophys. Chem. 131, 62–70 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Rose, G.D., Geselowitz, A.R., Lesser, G.J., Lee, R.H. & Zehfus, M.H. Hydrophobicity of amino acid residues in globular proteins. Science 229, 834–838 (1985).

    Article  CAS  PubMed  Google Scholar 

  14. Dougherty, D.A. Cation-pi interactions in chemistry and biology: a new view of benzene, Phe, Tyr, and Trp. Science 271, 163–168 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Bogan, A.A. & Thorn, K.S. Anatomy of hot spots in protein interfaces. J. Mol. Biol. 280, 1–9 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Gottlieb, H.E., Kotlyar, V. & Nudelman, A. NMR chemical shifts of common laboratory solvents as trace impurities. J. Org. Chem. 62, 7512–7515 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Butterfield, S.M., Patel, P.R. & Waters, M.L. Contribution of aromatic interactions to alpha-helix stability. J. Am. Chem. Soc. 124, 9751–9755 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Greenfield, N.J. Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions. Nat. Protoc. 1, 2527–2535 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Marqusee, S. & Baldwin, R.L. Helix stabilization by Glu-...Lys+ salt bridges in short peptides of de novo design. Proc. Natl. Acad. Sci. USA 84, 8898–8902 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pearson, K. LIII. On lines and planes of closest fit to systems of points in space. Phil. Mag. 2, 559–572 (1901).

    Article  Google Scholar 

  21. Yin, D., Kuczera, K. & Squier, T.C. The sensitivity of carboxyl-terminal methionines in calmodulin isoforms to oxidation by H(2)O(2) modulates the ability to activate the plasma membrane Ca-ATPase. Chem. Res. Toxicol. 13, 103–110 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Sacksteder, C.A. et al. Tertiary structural rearrangements upon oxidation of Methionine145 in calmodulin promotes targeted proteasomal degradation. Biophys. J. 91, 1480–1493 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gao, J., Yao, Y. & Squier, T.C. Oxidatively modified calmodulin binds to the plasma membrane Ca-ATPase in a nonproductive and conformationally disordered complex. Biophys. J. 80, 1791–1801 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gao, J. et al. Loss of conformational stability in calmodulin upon methionine oxidation. Biophys. J. 74, 1115–1134 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Boschek, C.B., Jones, T.E., Smallwood, H.S., Squier, T.C. & Bigelow, D.J. Loss of the calmodulin-dependent inhibition of the RyR1 calcium release channel upon oxidation of methionines in calmodulin. Biochemistry 47, 131–142 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Bartlett, R.K. et al. Oxidation of Met144 and Met145 in calmodulin blocks calmodulin dependent activation of the plasma membrane Ca-ATPase. Biochemistry 42, 3231–3238 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Babu, Y.S., Bugg, C.E. & Cook, W.J. Structure of calmodulin refined at 2.2 A resolution. J. Mol. Biol. 204, 191–204 (1988).

    Article  CAS  PubMed  Google Scholar 

  28. Kuboniwa, H. et al. Solution structure of calcium-free calmodulin. Nat. Struct. Biol. 2, 768–776 (1995).

    CAS  PubMed  Google Scholar 

  29. Mukherjea, P., Maune, J.F. & Beckingham, K. Interlobe communication in multiple calcium-binding site mutants of Drosophila calmodulin. Protein Sci. 5, 468–477 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Anbanandam, A. et al. Mediating molecular recognition by methionine oxidation: conformational switching by oxidation of methionine in the carboxyl-terminal domain of calmodulin. Biochemistry 44, 9486–9496 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Jeschke, G. DEER distance measurements on proteins. Annu. Rev. Phys. Chem. 63, 419–446 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Ilardi, E.A., Vitaku, E. & Njardarson, J.T. Data-mining for sulfur and fluorine: an evaluation of pharmaceuticals to reveal opportunities for drug design and discovery. J. Med. Chem. 57, 2832–2842 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Scott, J., Asami, M. & Tanaka, K. Novel chromogenic, guest-sensitive host compounds. New J. Chem. 26, 1822–1826 (2002).

    Article  CAS  Google Scholar 

  34. Jiménez, M.A., Muñoz, V., Rico, M. & Serrano, L. Helix stop and start signals in peptides and proteins. The capping box does not necessarily prevent helix elongation. J. Mol. Biol. 242, 487–496 (1994).

    PubMed  Google Scholar 

  35. Vasquez, M., Pincus, M.R. & Scheraga, H.A. Helix-coil transition theory including long-range electrostatic interactions: application to globular proteins. Biopolymers 26, 351–371 (1987).

    Article  CAS  PubMed  Google Scholar 

  36. Fealey, M.E. et al. Negative coupling as a mechanism for signal propagation between C2 domains of synaptotagmin I. PLoS One 7, e46748 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Horovitz, A. Double-mutant cycles: a powerful tool for analyzing protein structure and function. Fold. Des. 1, R121–R126 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Horovitz, A., Serrano, L., Avron, B., Bycroft, M. & Fersht, A.R. Strength and co-operativity of contributions of surface salt bridges to protein stability. J. Mol. Biol. 216, 1031–1044 (1990).

    Article  CAS  PubMed  Google Scholar 

  39. Serrano, L., Bycroft, M. & Fersht, A.R. Aromatic-aromatic interactions and protein stability. Investigation by double-mutant cycles. J. Mol. Biol. 218, 465–475 (1991).

    Article  CAS  PubMed  Google Scholar 

  40. Balog, E.M., Lockamy, E.L., Thomas, D.D. & Ferrington, D.A. Site-specific methionine oxidation initiates calmodulin degradation by the 20S proteasome. Biochemistry 48, 3005–3016 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Klein, J.C. et al. Actin-binding cleft closure in myosin II probed by site-directed spin labeling and pulsed EPR. Proc. Natl. Acad. Sci. USA 105, 12867–12872 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Etemadi, N. et al. Lymphotoxin α induces apoptosis, necroptosis and inflammatory signals with the same potency as tumour necrosis factor. FEBS J. 280, 5283–5297 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Frisch, M.J. et al. Gaussian 09, Revision D.01. (Gaussian, Inc., 2009).

  44. Boys, S.F. & Bernardi, F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 19, 553–566 (1970).

    Article  CAS  Google Scholar 

  45. Zhao, Y. & Truhlar, D.G. A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J. Chem. Phys. 125, 194101 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Reed, A.E., Curtiss, L.A. & Weinhold, F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 88, 899–926 (1988).

    Article  CAS  Google Scholar 

  47. Mulliken, R.S. Electronic population analysis on LCAO–MO molecular wave functions. I. J. Chem. Phys. 23, 1833–1840 (1955).

    Article  CAS  Google Scholar 

  48. Cramer, C.J. Essentials of Computational Chemistry: Theories and Models (John Wiley & Sons, 2013).

  49. Phillips, J.C. et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Banner, D.W. et al. Crystal structure of the soluble human 55 kd TNF receptor-human TNF beta complex: implications for TNF receptor activation. Cell 73, 431–445 (1993).

    Article  CAS  PubMed  Google Scholar 

  51. Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W. & Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

    Article  CAS  Google Scholar 

  52. MacKerell, A.D. et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586–3616 (1998).

    CAS  PubMed  Google Scholar 

  53. MacKerell, A.D. Jr., Feig, M. & Brooks, C.L. III. Improved treatment of the protein backbone in empirical force fields. J. Am. Chem. Soc. 126, 698–699 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Best, R.B. et al. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone ϕ, ψ and side-chain χ(1) and χ(2) dihedral angles. J. Chem. Theory Comput. 8, 3257–3273 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Martyna, G.J., Tobias, D.J. & Klein, M.L. Constant-pressure molecular-dynamics algorithms. J. Chem. Phys. 101, 4177–4189 (1994).

    Article  CAS  Google Scholar 

  56. Jas, G.S. & Kuczera, K. Free-energy simulations of the oxidation of c-terminal methionines in calmodulin. Proteins 48, 257–268 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Darden, T., Perera, L., Li, L. & Pedersen, L. New tricks for modelers from the crystallography toolkit: the particle mesh Ewald algorithm and its use in nucleic acid simulations. Structure 7, R55–R60 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Tuckerman, M., Berne, B.J. & Martyna, G.J. Reversible multiple time scale molecular dynamics. J. Chem. Phys. 97, 1990–2001 (1992).

    Article  CAS  Google Scholar 

  59. Andersen, H.C. Rattle: a velocity version of the shake algorithm for molecular-dynamics calculations. J. Comput. Phys. 52, 24–34 (1983).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants to J.N.S. (US National Institutes of Health (NIH) R01 GM107175), D.D.T. (NIH R37 AG26160), W.C.K.P. (US National Science Foundation (NSF)-CAREER CHE-1352091) and A.H. (NSF-CAREER MCB-0845676). This work was carried out in part using computing resources at the University of Minnesota Supercomputing Institute. EPR spectroscopy and CD experiments were performed at the Biophysical Spectroscopy Center, University of Minnesota. We thank J.F. Evans for discussion and guidance regarding the principal component analysis of our CD data.

Author information

Authors and Affiliations

Authors

Contributions

Project conception and production was directed by J.N.S. PDB search, molecular dynamics simulations, experimental and computational LTα work, and computational CaM work were performed by A.K.L., T.L.S., C.C.V. and J.N.S. CSD search and NMR spectroscopy were performed by G.T.P. and W.C.K.P. Quantum calculations were performed by M.A.J., A.C. and J.G. CD was performed by R.M., B.T.H., K.M.D. and A.H. Peptides were synthesized by C.B.K. CaM work was carried out by M.R.M, C.H. and D.D.T.

Corresponding authors

Correspondence to Alessandro Cembran, Anne Hinderliter or Jonathan N Sachs.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–7 and Supplementary Figures 1–17. (PDF 2035 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lewis, A., Dunleavy, K., Senkow, T. et al. Oxidation increases the strength of the methionine-aromatic interaction. Nat Chem Biol 12, 860–866 (2016). https://doi.org/10.1038/nchembio.2159

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2159

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing