Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TALE proteins search DNA using a rotationally decoupled mechanism

Abstract

Transcription activator-like effector (TALE) proteins are a class of programmable DNA-binding proteins used extensively for gene editing. Despite recent progress, however, little is known about their sequence search mechanism. Here, we use single-molecule experiments to study TALE search along DNA. Our results show that TALEs utilize a rotationally decoupled mechanism for nonspecific search, despite remaining associated with DNA templates during the search process. Our results suggest that the protein helical structure enables TALEs to adopt a loosely wrapped conformation around DNA templates during nonspecific search, facilitating rapid one-dimensional (1D) diffusion under a range of solution conditions. Furthermore, this model is consistent with a previously reported two-state mechanism for TALE search that allows these proteins to overcome the search speed–stability paradox. Taken together, our results suggest that TALE search is unique among the broad class of sequence-specific DNA-binding proteins and supports efficient 1D search along DNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Single-molecule imaging of TALEs during nonspecific search.
Figure 2: Effects of ionic strength on TALE diffusion.
Figure 3: Hydrodynamic flow assay for probing TALE diffusion along DNA.
Figure 4: Probe size dependence and mechanism of TALE diffusion along DNA.

Similar content being viewed by others

References

  1. Tebas, P. et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N. Engl. J. Med. 370, 901–910 (2014).

    Article  CAS  Google Scholar 

  2. Qi, L.S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183 (2013).

    Article  CAS  Google Scholar 

  3. Bedell, V.M. et al. In vivo genome editing using a high-efficiency TALEN system. Nature 491, 114–118 (2012).

    Article  CAS  Google Scholar 

  4. Ma, N. et al. Transcription activator-like effector nuclease (TALEN)-mediated gene correction in integration-free β-thalassemia induced pluripotent stem cells. J. Biol. Chem. 288, 34671–34679 (2013).

    Article  CAS  Google Scholar 

  5. Berdien, B., Mock, U., Atanackovic, D. & Fehse, B. TALEN-mediated editing of endogenous T-cell receptors facilitates efficient reprogramming of T lymphocytes by lentiviral gene transfer. Gene Ther. 21, 539–548 (2014).

    Article  CAS  Google Scholar 

  6. Deng, D. et al. Structural basis for sequence-specific recognition of DNA by TAL effectors. Science 335, 720–723 (2012).

    Article  CAS  Google Scholar 

  7. Mak, A.N.-S., Bradley, P., Cernadas, R.A., Bogdanove, A.J. & Stoddard, B.L. The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 335, 716–719 (2012).

    Article  CAS  Google Scholar 

  8. Boch, J. & Bonas, U. Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu. Rev. Phytopathol. 48, 419–436 (2010).

    Article  CAS  Google Scholar 

  9. Gao, H., Wu, X., Chai, J. & Han, Z. Crystal structure of a TALE protein reveals an extended N-terminal DNA binding region. Cell Res. 22, 1716–1720 (2012).

    Article  CAS  Google Scholar 

  10. Bogdanove, A.J., Schornack, S. & Lahaye, T. TAL effectors: finding plant genes for disease and defense. Curr. Opin. Plant Biol. 13, 394–401 (2010).

    Article  CAS  Google Scholar 

  11. Boch, J. et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326, 1509–1512 (2009).

    Article  CAS  Google Scholar 

  12. Bogdanove, A.J. & Voytas, D.F. TAL effectors: customizable proteins for DNA targeting. Science 333, 1843–1846 (2011).

    Article  CAS  Google Scholar 

  13. Yildiz, A. et al. Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300, 2061–2065 (2003).

    Article  CAS  Google Scholar 

  14. Blainey, P.C. et al. Nonspecifically bound proteins spin while diffusing along DNA. Nat. Struct. Mol. Biol. 16, 1224–1229 (2009).

    Article  CAS  Google Scholar 

  15. Cuculis, L., Abil, Z., Zhao, H. & Schroeder, C.M. Direct observation of TALE protein dynamics reveals a two-state search mechanism. Nat. Commun. 6, 7277 (2015).

    Article  CAS  Google Scholar 

  16. Yardimci, H., Loveland, A.B., van Oijen, A.M. & Walter, J.C. Single-molecule analysis of DNA replication in Xenopus egg extracts. Methods 57, 179–186 (2012).

    Article  CAS  Google Scholar 

  17. Sun, N., Liang, J., Abil, Z. & Zhao, H. Optimized TAL effector nucleases (TALENs) for use in treatment of sickle cell disease. Mol. Biosyst. 8, 1255–1263 (2012).

    Article  CAS  Google Scholar 

  18. Richter, A., Streubel, J. & Boch, J. TAL effector DNA-binding principles and specificity. Methods Mol. Biol. 1338, 9–25 (2016).

    Article  CAS  Google Scholar 

  19. Mussolino, C. & Cathomen, T. TALE nucleases: tailored genome engineering made easy. Curr. Opin. Biotechnol. 23, 644–650 (2012).

    Article  CAS  Google Scholar 

  20. Miller, J.C. et al. A TALE nuclease architecture for efficient genome editing. Nat. Biotechnol. 29, 143–148 (2011).

    Article  CAS  Google Scholar 

  21. Carrico, I.S., Carlson, B.L. & Bertozzi, C.R. Introducing genetically encoded aldehydes into proteins. Nat. Chem. Biol. 3, 321–322 (2007).

    Article  CAS  Google Scholar 

  22. Shi, X. et al. Quantitative fluorescence labeling of aldehyde-tagged proteins for single-molecule imaging. Nat. Methods 9, 499–503 (2012).

    Article  CAS  Google Scholar 

  23. Vestergaard, C.L., Blainey, P.C. & Flyvbjerg, H. Optimal estimation of diffusion coefficients from single-particle trajectories. Phys. Rev. E 89, 022726 (2014).

    Article  Google Scholar 

  24. Halford, S.E. & Marko, J.F. How do site-specific DNA-binding proteins find their targets? Nucleic Acids Res. 32, 3040–3052 (2004).

    Article  CAS  Google Scholar 

  25. Kochaniak, A.B. et al. Proliferating cell nuclear antigen uses two distinct modes to move along DNA. J. Biol. Chem. 284, 17700–17710 (2009).

    Article  CAS  Google Scholar 

  26. Cravens, S.L., Hobson, M. & Stivers, J.T. Electrostatic properties of complexes along a DNA glycosylase damage search pathway. Biochemistry 53, 7680–7692 (2014).

    Article  CAS  Google Scholar 

  27. Etson, C.M., Hamdan, S.M., Richardson, C.C. & van Oijen, A.M. Thioredoxin suppresses microscopic hopping of T7 DNA polymerase on duplex DNA. Proc. Natl. Acad. Sci. USA 107, 1900–1905 (2010).

    Article  CAS  Google Scholar 

  28. Komazin-Meredith, G., Mirchev, R., Golan, D.E., van Oijen, A.M. & Coen, D.M. Hopping of a processivity factor on DNA revealed by single-molecule assays of diffusion. Proc. Natl. Acad. Sci. USA 105, 10721–10726 (2008).

    Article  CAS  Google Scholar 

  29. Berg, O.G., Winter, R.B. & von Hippel, P.H. Diffusion-driven mechanisms of protein translocation on nucleic acids. 1. Models and theory. Biochemistry 20, 6929–6948 (1981).

    Article  CAS  Google Scholar 

  30. Cho, W.K. et al. ATP alters the diffusion mechanics of MutS on mismatched DNA. Structure 20, 1264–1274 (2012).

    Article  CAS  Google Scholar 

  31. Dikić, J. et al. The rotation-coupled sliding of EcoRV. Nucleic Acids Res. 40, 4064–4070 (2012).

    Article  Google Scholar 

  32. Schurr, J.M. The one-dimensional diffusion coefficient of proteins absorbed on DNA hydrodynamic considerations. Biophys. Chem. 9, 413–414 (1975).

    Article  CAS  Google Scholar 

  33. Blainey, P.C. et al. Regulation of a viral proteinase by a peptide and DNA in one-dimensional space: IV. Viral proteinase slides along DNA to locate and process its substrates. J. Biol. Chem. 288, 2092–2102 (2013).

    Article  CAS  Google Scholar 

  34. Xiong, K. & Blainey, P.C. Molecular sled sequences are common in mammalian proteins. Nucleic Acids Res. 44, 2266–2273 (2016).

    Article  CAS  Google Scholar 

  35. Tafvizi, A., Huang, F., Fersht, A.R., Mirny, L.A. & van Oijen, A.M. A single-molecule characterization of p53 search on DNA. Proc. Natl. Acad. Sci. USA 108, 563–568 (2011).

    Article  CAS  Google Scholar 

  36. Dunn, A.R., Kad, N.M., Nelson, S.R., Warshaw, D.M. & Wallace, S.S. Single Qdot-labeled glycosylase molecules use a wedge amino acid to probe for lesions while scanning along DNA. Nucleic Acids Res. 39, 7487–7498 (2011).

    Article  CAS  Google Scholar 

  37. Barbi, M. & Paillusson, F. in Advances in Protein Chemistry and Structural Biology Vol. 92 (ed. Karabencheva-Christova, T.) 253–297 (Elsevier, 2013).

  38. Esadze, A., Kemme, C.A., Kolomeisky, A.B. & Iwahara, J. Positive and negative impacts of nonspecific sites during target location by a sequence-specific DNA-binding protein: origin of the optimal search at physiological ionic strength. Nucleic Acids Res. 42, 7039–7046 (2014).

    Article  CAS  Google Scholar 

  39. Terakawa, T., Kenzaki, H. & Takada, S. p53 searches on DNA by rotation-uncoupled sliding at C-terminal tails and restricted hopping of core domains. J. Am. Chem. Soc. 134, 14555–14562 (2012).

    Article  CAS  Google Scholar 

  40. Schwarz, F.W. et al. The helicase-like domains of type III restriction enzymes trigger long-range diffusion along DNA. Science 340, 353–356 (2013).

    Article  CAS  Google Scholar 

  41. Gorman, J. et al. Single-molecule imaging reveals target-search mechanisms during DNA mismatch repair. Proc. Natl. Acad. Sci. USA 109, E3074–E3083 (2012).

    Article  CAS  Google Scholar 

  42. Kampmann, M. Obstacle bypass in protein motion along DNA by two-dimensional rather than one-dimensional sliding. J. Biol. Chem. 279, 38715–38720 (2004).

    Article  CAS  Google Scholar 

  43. Slutsky, M. & Mirny, L.A. Kinetics of protein-DNA interaction: facilitated target location in sequence-dependent potential. Biophys. J. 87, 4021–4035 (2004).

    Article  CAS  Google Scholar 

  44. Lei, H., Sun, J., Baldwin, E.P., Segal, D.J. & Duan, Y. in Advances in Protein Chemistry and Structural Biology Vol. 94 (ed. Donev, R.) 347–364 (Elsevier, 2014).

  45. Schreiber, T. et al. Refined requirements for protein regions important for activity of the TALE AvrBs3. PLoS One 10, e0120214 (2015).

    Article  Google Scholar 

  46. Cermak, T. et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 39, e82 (2011).

    Article  CAS  Google Scholar 

  47. Schroeder, C.M., Blainey, P.C., Kim, S. & Xie, X.S. in Single-Molecule Technology: A Laboratory Manual (eds. Selvin, P.R. & Ha, T.) 461–492 (2008).

  48. Wolter, S. et al. rapidSTORM: accurate, fast open-source software for localization microscopy. Nat. Methods 9, 1040–1041 (2012).

    Article  CAS  Google Scholar 

  49. Marko, J.F. & Siggia, E.D. Stretching DNA. Macromolecules 28, 8759–8770 (1995).

    Article  CAS  Google Scholar 

  50. Bagchi, B., Blainey, P.C. & Xie, X.S. Diffusion constant of a nonspecifically bound protein undergoing curvilinear motion along DNA. J. Phys. Chem. B 112, 6282–6284 (2008).

    Article  CAS  Google Scholar 

  51. Murakami, M.T. et al. The repeat domain of the type III effector protein PthA shows a TPR-like structure and undergoes conformational changes upon DNA interaction. Proteins 78, 3386–3395 (2010).

    Article  CAS  Google Scholar 

  52. Desruisseaux, C., Long, D., Drouin, G. & Slater, G.W. Electrophoresis of composite molecular objects. 1. Relation between friction, charge, and ionic strength in free solution. Macromolecules 34, 44–52 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Ha (University of Illinois Urbana–Champaign) for providing the plasmid for the aldehyde labeling scheme and S. Li for assistance in acquiring transmission electron microscope images of quantum dots. C.M.S. is funded by the David and Lucile Packard Foundation. H.Z. and L.C. are funded by the Institute for Genomic Biology at the University of Illinois at Urbana–Champaign. L.C. is funded by the FMC Corporation.

Author information

Authors and Affiliations

Authors

Contributions

L.C., Z.A., H.Z., and C.M.S. designed experiments. Z.A. generated protein and DNA samples. L.C. performed single-molecule experiments and data analysis. L.C., Z.A., H.Z., and C.M.S. prepared the manuscript.

Corresponding author

Correspondence to Charles M Schroeder.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results and Supplementary Figures 1–13. (PDF 2258 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuculis, L., Abil, Z., Zhao, H. et al. TALE proteins search DNA using a rotationally decoupled mechanism. Nat Chem Biol 12, 831–837 (2016). https://doi.org/10.1038/nchembio.2152

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2152

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing