Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An histidine covalent receptor and butenolide complex mediates strigolactone perception

Abstract

Strigolactone plant hormones control plant architecture and are key players in both symbiotic and parasitic interactions. They contain an ABC tricyclic lactone connected to a butenolide group, the D ring. The DWARF14 (D14) strigolactone receptor belongs to the superfamily of α/β-hydrolases, and is known to hydrolyze the bond between the ABC lactone and the D ring. Here we characterized the binding and catalytic functions of RAMOSUS3 (RMS3), the pea (Pisum sativum) ortholog of rice (Oryza sativa) D14 strigolactone receptor. Using new profluorescent probes with strigolactone-like bioactivity, we found that RMS3 acts as a single-turnover enzyme that explains its apparent low enzymatic rate. We demonstrated the formation of a covalent RMS3-D-ring complex, essential for bioactivity, in which the D ring was attached to histidine 247 of the catalytic triad. These results reveal an undescribed mechanism of plant hormone reception in which the receptor performs an irreversible enzymatic reaction to generate its own ligand.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RMS3 interacted with and hydrolyzed GR24 enantiomers, and was stabilized by these compounds.
Figure 2: Characterization of the profluorescent probe (±)-GC242.
Figure 3: Enzymatic kinetics reveal that the serine and histidine of the catalytic triad are essential for RMS3 and AtD14 function.
Figure 4: RMS3 acts as single-turnover enzyme.
Figure 5: Formation of a stable RMS3-D-ring complex.

Similar content being viewed by others

References

  1. Xie, X., Yoneyama, K. & Yoneyama, K. Annu. Rev. Phytopathol. 48, 93–117 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Gomez-Roldan, V. et al. Strigolactone inhibition of shoot branching. Nature 455, 189–194 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Umehara, M. et al. Inhibition of shoot branching by new terpenoid plant hormones. Nature 455, 195–200 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Brewer, P.B., Koltai, H. & Beveridge, C.A. Diverse roles of strigolactones in plant development. Mol. Plant 6, 18–28 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. de Saint Germain, A., Bonhomme, S., Boyer, F.-D. & Rameau, C. Novel insights into strigolactone distribution and signalling. Curr. Opin. Plant Biol. 16, 583–589 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Hamiaux, C. et al. DAD2 is an α/β hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone. Curr. Biol. 22, 2032–2036 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Tsuchiya, Y. et al. Probing strigolactone receptors in Striga hermonthica with fluorescence. Science 349, 864–868 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Zhao, L.-H. et al. Destabilization of strigolactone receptor DWARF14 by binding of ligand and E3-ligase signaling effector DWARF3. Cell Res. 25, 1219–1236 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nakamura, H. et al. Molecular mechanism of strigolactone perception by DWARF14. Nat. Commun. 4, 2613 (2013).

    Article  PubMed  Google Scholar 

  10. Zhao, L.H. et al. Crystal structures of two phytohormone signal-transducing α/β hydrolases: karrikin-signaling KAI2 and strigolactone-signaling DWARF14. Cell Res. 23, 436–439 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Abe, S. et al. Carlactone is converted to carlactonoic acid by MAX1 in Arabidopsis and its methyl ester can directly interact with AtD14 in vitro. Proc. Natl. Acad. Sci. USA 111, 18084–18089 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wallner, E.-S., López-Salmerón, V. & Greb, T. Strigolactone versus gibberellin signaling: reemerging concepts? Planta 243, 1339–1350 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Beveridge, C.A., Dun, E.A. & Rameau, C. Pea has its tendrils in branching discoveries spanning a century from auxin to strigolactones. Plant Physiol. 151, 985–990 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Alves-Carvalho, S. et al. Full-length de novo assembly of RNA-seq data in pea (Pisum sativum L.) provides a gene expression atlas and gives insights into root nodulation in this species. Plant J. 84, 1–19 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Beveridge, C.A., Ross, J.J. & Murfet, I.C. Branching in pea—action of genes Rms3 and Rms4. Plant Physiol. 110, 859–865 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Waters, M.T. et al. Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis. Development 139, 1285–1295 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Sun, X.-D. & Ni, M. HYPOSENSITIVE TO LIGHT, an alpha/beta fold protein, acts downstream of ELONGATED HYPOCOTYL 5 to regulate seedling de-etiolation. Mol. Plant 4, 116–126 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Nelson, D.C. et al. F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 108, 8897–8902 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guo, Y., Zheng, Z., La Clair, J.J., Chory, J. & Noel, J.P. Smoke-derived karrikin perception by the α/β-hydrolase KAI2 from Arabidopsis. Proc. Natl. Acad. Sci. USA 110, 8284–8289 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Scaffidi, A. et al. Strigolactone hormones and their stereoisomers signal through two related receptor proteins to induce different physiological responses in Arabidopsis. Plant Physiol. 165, 1221–1232 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Boyer, F.-D. et al. Structure-activity relationship studies of strigolactone-related molecules for branching inhibition in garden pea: molecule design for shoot branching. Plant Physiol. 159, 1524–1544 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Waters, M.T. et al. A Selaginella moellendorffii ortholog of KARRIKIN INSENSITIVE2 functions in Arabidopsis development but cannot mediate responses to karrikins or strigolactones. Plant Cell 27, 1925–1944 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang, Y. et al. Inactive methyl indole-3-acetic acid ester can be hydrolyzed and activated by several esterases belonging to the AtMES esterase family of Arabidopsis. Plant Physiol. 147, 1034–1045 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Boyer, F.-D. et al. New strigolactone analogs as plant hormones with low activities in the rhizosphere. Mol. Plant 7, 675–690 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Shi, W. & Ma, H. Spectroscopic probes with changeable π-conjugated systems. Chem. Commun. (Camb.) 48, 8732–8744 (2012).

    Article  CAS  Google Scholar 

  26. Sun, W.C., Gee, K.R. & Haugland, R.P. Synthesis of novel fluorinated coumarins: excellent UV-light excitable fluorescent dyes. Bioorg. Med. Chem. Lett. 8, 3107–3110 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Dun, E.A., de Saint Germain, A., Rameau, C. & Beveridge, C.A. Dynamics of strigolactone function and shoot branching responses in Pisum sativum. Mol. Plant 6, 128–140 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Fenaille, F., Guy, P.A. & Tabet, J.-C. Study of protein modification by 4-hydroxy-2-nonenal and other short chain aldehydes analyzed by electrospray ionization tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 14, 215–226 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Chevalier, F. et al. Strigolactone promotes degradation of DWARF14, an α/β hydrolase essential for strigolactone signaling in Arabidopsis. Plant Cell 26, 1134–1150 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gutjahr, C. et al. Rice perception of symbiotic arbuscular mycorrhizal fungi requires the karrikin receptor complex. Science 350, 1521–1524 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Conn, C.E. et al. Convergent evolution of strigolactone perception enabled host detection in parasitic plants. Science 349, 540–543 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Lopez-Obando, M. et al. Structural modelling and transcriptional responses highlight a clade of PpKAI2-LIKE genes as candidate receptors for strigolactones in Physcomitrella patens. Planta 243, 1441–1453 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Toh, S. et al. Structure-function analysis identifies highly sensitive strigolactone receptors in Striga. Science 350, 203–207 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Arumingtyas, E.L., Floyd, F.S., Gregory, M.J. & Murfet, I.C. Branching in Pisum: inheritance and allelism tests with 17 ramosus mutants. Pisum Genet. 24, 17–31 (1992).

    Google Scholar 

  35. Rameau, C. et al. New ramosus mutants at loci Rms1, Rms3 and Rms4 resulting from the mutation breeding program at Versailles. Pisum Genet. 29, 7–12 (1997).

    Google Scholar 

  36. Symons, G.M. & Murfet, I.C. Inheritance and allelism tests on six further branching mutants in pea. Pisum Genet. 29, 1–6 (1997).

    Google Scholar 

  37. Braun, N. et al. The pea TCP transcription factor PsBRC1 acts downstream of Strigolactones to control shoot branching. Plant Physiol. 158, 225–238 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Sorefan, K. et al. MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea. Genes Dev. 17, 1469–1474 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Stirnberg, P., van De Sande, K. & Leyser, H.M.O. MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development 129, 1131–1141 (2002).

    CAS  PubMed  Google Scholar 

  40. Toh, S., Holbrook-Smith, D., Stokes, M.E., Tsuchiya, Y. & McCourt, P. Detection of parasitic plant suicide germination compounds using a high-throughput Arabidopsis HTL/KAI2 strigolactone perception system. Chem. Biol. 21, 988–998 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Karimi, M., Bleys, A., Vanderhaeghen, R. & Hilson, P. Building blocks for plant gene assembly. Plant Physiol. 145, 1183–1191 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Clough, S.J. & Bent, A.F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).

    Article  CAS  PubMed  Google Scholar 

  44. Geoghegan, K.F. et al. Spontaneous alpha-N-6-phosphogluconoylation of a “His tag” in Escherichia coli: the cause of extra mass of 258 or 178 Da in fusion proteins. Anal. Biochem. 267, 169–184 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 71, 3–8 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Drapeau, G.R., Boily, Y. & Houmard, J. Purification and properties of an extracellular protease of Staphylococcus aureus. J. Biol. Chem. 247, 6720–6726 (1972).

    CAS  PubMed  Google Scholar 

  48. Kelley, L.A. & Sternberg, M.J.E. Protein structure prediction on the Web: a case study using the Phyre server. Nat. Protoc. 4, 363–371 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. McNicholas, S., Potterton, E., Wilson, K.S. & Noble, M.E.M. Presenting your structures: the CCP4mg molecular-graphics software. Acta Crystallogr. D Biol. Crystallogr. 67, 386–394 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Worth, C.L., Preissner, R. & Blundell, T.L. SDM—a server for predicting effects of mutations on protein stability and malfunction. Nucleic Acids Res. 39, W215–W222 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tamura, K. et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schwarz, M. & Dayhoff, M. Matrices for detecting distant relationships. in (ed. Dayhoff, M.) 353–358 (National Biomedical Research Foundation, Washington, DC, 1979).

  53. Fox, J. The R commander: a basic-statistics graphical user interface to R. J. Stat. Softw. 14, 1–42 (2005).

    Google Scholar 

Download references

Acknowledgements

We thank R. Novaretti for plant bioassays, A.E. Stewart for helpful discussion, S.K. Lin for technical assistance, J.-P. Andrieu for the assistance and access to amino acids determination facility, U. Pedmale for technical advice, and B.C. Willige, C. Bourbousse, J. Woodson, U. Pedmale, A. Seluzicki and D. O'Keefe for their comments on the manuscript. We are grateful to the Institut National de la Recherche Agronomique (INRA), the Agence Nationale de la Recherche (contract ANR-12-BSV6-004-01) and the Stream COST Action FA1206 for financial support. A.d.S.G. and J.C. were partially supported by a grant to J.C. from US National Institutes of Health (R01 GM094428). J.C. is funded as an investigator of the Howard Hughes Medical Institute. A.d.S.G. was partially supported by a grant from Catharina Foundation to the Salk Institute. The Institut Jean-Pierre Bourgin benefits from the support of the Labex Saclay Plant Sciences-SPS (ANR-10-LABX-0040-SPS).

Author information

Authors and Affiliations

Authors

Contributions

A.d.S.G., G.C., J.C., C.R., F.-D.B. designed research; G.C. designed and synthesized the probes; G.C., F.-D.B. synthesized the other chemicals; A.d.S.G., M.-A.B.-D. produced and purified the proteins; A.d.S.G. characterized the proteins; A.d.S.G., G.C. did the kinetic experiments; A.d.S.G., J.-P.P., S.B., C.R., F.-D.B. performed the plant experiments; D.C., J.-P.L.C. performed the mass experiments; G.C., F.P., F.-D.B. performed the HPLC analyses and separations; P.R. did the x-ray analyses; M.B. did the protein modeling; C.T. performed strigolactone quantifications in pea; A.d.S.G., G.C., M.-A.B.-D., J.-P.L.C., P.R., C.T., J.C., S.B., C.R., F.-D.B. analyzed data; A.d.S.G., C.R., F.-D.B. wrote the paper.

Corresponding authors

Correspondence to Joanne Chory, Catherine Rameau or François-Didier Boyer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–6 and Supplementary Figures 1–30. (PDF 23903 kb)

Supplementary Note

Synthetic Procedures (PDF 761 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Saint Germain, A., Clavé, G., Badet-Denisot, MA. et al. An histidine covalent receptor and butenolide complex mediates strigolactone perception. Nat Chem Biol 12, 787–794 (2016). https://doi.org/10.1038/nchembio.2147

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2147

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing