Article | Published:

An histidine covalent receptor and butenolide complex mediates strigolactone perception

Nature Chemical Biology volume 12, pages 787794 (2016) | Download Citation

Abstract

Strigolactone plant hormones control plant architecture and are key players in both symbiotic and parasitic interactions. They contain an ABC tricyclic lactone connected to a butenolide group, the D ring. The DWARF14 (D14) strigolactone receptor belongs to the superfamily of α/β-hydrolases, and is known to hydrolyze the bond between the ABC lactone and the D ring. Here we characterized the binding and catalytic functions of RAMOSUS3 (RMS3), the pea (Pisum sativum) ortholog of rice (Oryza sativa) D14 strigolactone receptor. Using new profluorescent probes with strigolactone-like bioactivity, we found that RMS3 acts as a single-turnover enzyme that explains its apparent low enzymatic rate. We demonstrated the formation of a covalent RMS3-D-ring complex, essential for bioactivity, in which the D ring was attached to histidine 247 of the catalytic triad. These results reveal an undescribed mechanism of plant hormone reception in which the receptor performs an irreversible enzymatic reaction to generate its own ligand.

  • Compound

    6,8-difluoro-4-methyl-7-[(4-methyl-5-oxo-2,5-dihydrofuran-2-yl)oxy]-2H-chromen-2-one

  • Compound

    6,8-difluoro-4-methyl-7-[(5-oxo-2,5-dihydrofuran-2-yl)oxy]-2H-chromen-2-one

  • Compound

    6,8-difluoro-4-methyl-7-[(3,4-dimethyl-5-oxo-2,5-dihydrofuran-2-yl)oxy]-2H-chromen-2-one

  • Compound

    (S)-6,8-difluoro-4-methyl-7-[(3,4-dimethyl-5-oxo-2,5-dihydrofuran-2-yl)oxy]-2H-chromen-2-one.

  • Compound

    (R)-6,8-difluoro-4-methyl-7-[(3,4-dimethyl-5-oxo-2,5-dihydrofuran-2-yl)oxy]-2H-chromen-2-one

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , & Annu. Rev. Phytopathol. 48, 93–117 (2010).

  2. 2.

    et al. Strigolactone inhibition of shoot branching. Nature 455, 189–194 (2008).

  3. 3.

    et al. Inhibition of shoot branching by new terpenoid plant hormones. Nature 455, 195–200 (2008).

  4. 4.

    , & Diverse roles of strigolactones in plant development. Mol. Plant 6, 18–28 (2013).

  5. 5.

    , , & Novel insights into strigolactone distribution and signalling. Curr. Opin. Plant Biol. 16, 583–589 (2013).

  6. 6.

    et al. DAD2 is an α/β hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone. Curr. Biol. 22, 2032–2036 (2012).

  7. 7.

    et al. Probing strigolactone receptors in Striga hermonthica with fluorescence. Science 349, 864–868 (2015).

  8. 8.

    et al. Destabilization of strigolactone receptor DWARF14 by binding of ligand and E3-ligase signaling effector DWARF3. Cell Res. 25, 1219–1236 (2015).

  9. 9.

    et al. Molecular mechanism of strigolactone perception by DWARF14. Nat. Commun. 4, 2613 (2013).

  10. 10.

    et al. Crystal structures of two phytohormone signal-transducing α/β hydrolases: karrikin-signaling KAI2 and strigolactone-signaling DWARF14. Cell Res. 23, 436–439 (2013).

  11. 11.

    et al. Carlactone is converted to carlactonoic acid by MAX1 in Arabidopsis and its methyl ester can directly interact with AtD14 in vitro. Proc. Natl. Acad. Sci. USA 111, 18084–18089 (2014).

  12. 12.

    , & Strigolactone versus gibberellin signaling: reemerging concepts? Planta 243, 1339–1350 (2016).

  13. 13.

    , & Pea has its tendrils in branching discoveries spanning a century from auxin to strigolactones. Plant Physiol. 151, 985–990 (2009).

  14. 14.

    et al. Full-length de novo assembly of RNA-seq data in pea (Pisum sativum L.) provides a gene expression atlas and gives insights into root nodulation in this species. Plant J. 84, 1–19 (2015).

  15. 15.

    , & Branching in pea—action of genes Rms3 and Rms4. Plant Physiol. 110, 859–865 (1996).

  16. 16.

    et al. Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis. Development 139, 1285–1295 (2012).

  17. 17.

    & HYPOSENSITIVE TO LIGHT, an alpha/beta fold protein, acts downstream of ELONGATED HYPOCOTYL 5 to regulate seedling de-etiolation. Mol. Plant 4, 116–126 (2011).

  18. 18.

    et al. F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 108, 8897–8902 (2011).

  19. 19.

    , , , & Smoke-derived karrikin perception by the α/β-hydrolase KAI2 from Arabidopsis. Proc. Natl. Acad. Sci. USA 110, 8284–8289 (2013).

  20. 20.

    et al. Strigolactone hormones and their stereoisomers signal through two related receptor proteins to induce different physiological responses in Arabidopsis. Plant Physiol. 165, 1221–1232 (2014).

  21. 21.

    et al. Structure-activity relationship studies of strigolactone-related molecules for branching inhibition in garden pea: molecule design for shoot branching. Plant Physiol. 159, 1524–1544 (2012).

  22. 22.

    et al. A Selaginella moellendorffii ortholog of KARRIKIN INSENSITIVE2 functions in Arabidopsis development but cannot mediate responses to karrikins or strigolactones. Plant Cell 27, 1925–1944 (2015).

  23. 23.

    et al. Inactive methyl indole-3-acetic acid ester can be hydrolyzed and activated by several esterases belonging to the AtMES esterase family of Arabidopsis. Plant Physiol. 147, 1034–1045 (2008).

  24. 24.

    et al. New strigolactone analogs as plant hormones with low activities in the rhizosphere. Mol. Plant 7, 675–690 (2014).

  25. 25.

    & Spectroscopic probes with changeable π-conjugated systems. Chem. Commun. (Camb.) 48, 8732–8744 (2012).

  26. 26.

    , & Synthesis of novel fluorinated coumarins: excellent UV-light excitable fluorescent dyes. Bioorg. Med. Chem. Lett. 8, 3107–3110 (1998).

  27. 27.

    , , & Dynamics of strigolactone function and shoot branching responses in Pisum sativum. Mol. Plant 6, 128–140 (2013).

  28. 28.

    , & Study of protein modification by 4-hydroxy-2-nonenal and other short chain aldehydes analyzed by electrospray ionization tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 14, 215–226 (2003).

  29. 29.

    et al. Strigolactone promotes degradation of DWARF14, an α/β hydrolase essential for strigolactone signaling in Arabidopsis. Plant Cell 26, 1134–1150 (2014).

  30. 30.

    et al. Rice perception of symbiotic arbuscular mycorrhizal fungi requires the karrikin receptor complex. Science 350, 1521–1524 (2015).

  31. 31.

    et al. Convergent evolution of strigolactone perception enabled host detection in parasitic plants. Science 349, 540–543 (2015).

  32. 32.

    et al. Structural modelling and transcriptional responses highlight a clade of PpKAI2-LIKE genes as candidate receptors for strigolactones in Physcomitrella patens. Planta 243, 1441–1453 (2016).

  33. 33.

    et al. Structure-function analysis identifies highly sensitive strigolactone receptors in Striga. Science 350, 203–207 (2015).

  34. 34.

    , , & Branching in Pisum: inheritance and allelism tests with 17 ramosus mutants. Pisum Genet. 24, 17–31 (1992).

  35. 35.

    et al. New ramosus mutants at loci Rms1, Rms3 and Rms4 resulting from the mutation breeding program at Versailles. Pisum Genet. 29, 7–12 (1997).

  36. 36.

    & Inheritance and allelism tests on six further branching mutants in pea. Pisum Genet. 29, 1–6 (1997).

  37. 37.

    et al. The pea TCP transcription factor PsBRC1 acts downstream of Strigolactones to control shoot branching. Plant Physiol. 158, 225–238 (2012).

  38. 38.

    et al. MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea. Genes Dev. 17, 1469–1474 (2003).

  39. 39.

    , & MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development 129, 1131–1141 (2002).

  40. 40.

    , , , & Detection of parasitic plant suicide germination compounds using a high-throughput Arabidopsis HTL/KAI2 strigolactone perception system. Chem. Biol. 21, 988–998 (2014).

  41. 41.

    , , & Building blocks for plant gene assembly. Plant Physiol. 145, 1183–1191 (2007).

  42. 42.

    & Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743 (1998).

  43. 43.

    Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).

  44. 44.

    et al. Spontaneous alpha-N-6-phosphogluconoylation of a “His tag” in Escherichia coli: the cause of extra mass of 258 or 178 Da in fusion proteins. Anal. Biochem. 267, 169–184 (1999).

  45. 45.

    A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008).

  46. 46.

    Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 71, 3–8 (2015).

  47. 47.

    , & Purification and properties of an extracellular protease of Staphylococcus aureus. J. Biol. Chem. 247, 6720–6726 (1972).

  48. 48.

    & Protein structure prediction on the Web: a case study using the Phyre server. Nat. Protoc. 4, 363–371 (2009).

  49. 49.

    , , & Presenting your structures: the CCP4mg molecular-graphics software. Acta Crystallogr. D Biol. Crystallogr. 67, 386–394 (2011).

  50. 50.

    , & SDM—a server for predicting effects of mutations on protein stability and malfunction. Nucleic Acids Res. 39, W215–W222 (2011).

  51. 51.

    et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739 (2011).

  52. 52.

    & Matrices for detecting distant relationships. in (ed. Dayhoff, M.) 353–358 (National Biomedical Research Foundation, Washington, DC, 1979).

  53. 53.

    The R commander: a basic-statistics graphical user interface to R. J. Stat. Softw. 14, 1–42 (2005).

Download references

Acknowledgements

We thank R. Novaretti for plant bioassays, A.E. Stewart for helpful discussion, S.K. Lin for technical assistance, J.-P. Andrieu for the assistance and access to amino acids determination facility, U. Pedmale for technical advice, and B.C. Willige, C. Bourbousse, J. Woodson, U. Pedmale, A. Seluzicki and D. O'Keefe for their comments on the manuscript. We are grateful to the Institut National de la Recherche Agronomique (INRA), the Agence Nationale de la Recherche (contract ANR-12-BSV6-004-01) and the Stream COST Action FA1206 for financial support. A.d.S.G. and J.C. were partially supported by a grant to J.C. from US National Institutes of Health (R01 GM094428). J.C. is funded as an investigator of the Howard Hughes Medical Institute. A.d.S.G. was partially supported by a grant from Catharina Foundation to the Salk Institute. The Institut Jean-Pierre Bourgin benefits from the support of the Labex Saclay Plant Sciences-SPS (ANR-10-LABX-0040-SPS).

Author information

Author notes

    • Alexandre de Saint Germain
    •  & Guillaume Clavé

    These authors contributed equally to this work.

Affiliations

  1. Institut Jean-Pierre Bourgin, INRA, Versailles, France.

    • Alexandre de Saint Germain
    • , Jean-Paul Pillot
    • , Sandrine Bonhomme
    • , Catherine Rameau
    •  & François-Didier Boyer
  2. Institut Jean-Pierre Bourgin, AgroParisTech, Versailles, France.

    • Alexandre de Saint Germain
    • , Jean-Paul Pillot
    • , Sandrine Bonhomme
    • , Catherine Rameau
    •  & François-Didier Boyer
  3. Institut Jean-Pierre Bourgin, CNRS, Versailles, France.

    • Alexandre de Saint Germain
    • , Jean-Paul Pillot
    • , Sandrine Bonhomme
    • , Catherine Rameau
    •  & François-Didier Boyer
  4. Institut Jean-Pierre Bourgin, Université Paris-Saclay, Versailles, France.

    • Alexandre de Saint Germain
    • , Jean-Paul Pillot
    • , Sandrine Bonhomme
    • , Catherine Rameau
    •  & François-Didier Boyer
  5. Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California, USA.

    • Alexandre de Saint Germain
    • , Marco Burger
    •  & Joanne Chory
  6. Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA.

    • Alexandre de Saint Germain
    • , Marco Burger
    •  & Joanne Chory
  7. Institut de Chimie des Substances Naturelles, CNRS UPR2301, Gif-sur-Yvette, France.

    • Guillaume Clavé
    • , Marie-Ange Badet-Denisot
    • , Jean-Pierre Le Caer
    • , Frank Pelissier
    • , Pascal Retailleau
    •  & François-Didier Boyer
  8. Institut de Chimie des Substances Naturelles, Université Paris Sud, Gif-sur-Yvette, France.

    • Guillaume Clavé
    • , Marie-Ange Badet-Denisot
    • , Jean-Pierre Le Caer
    • , Frank Pelissier
    • , Pascal Retailleau
    •  & François-Didier Boyer
  9. Institut de Chimie des Substances Naturelles, Université Paris-Saclay, Gif-sur-Yvette, France.

    • Guillaume Clavé
    • , Marie-Ange Badet-Denisot
    • , Jean-Pierre Le Caer
    • , Frank Pelissier
    • , Pascal Retailleau
    •  & François-Didier Boyer
  10. Institut de Biologie Intégrative de la Cellule, CNRS, Gif-sur-Yvette, France.

    • David Cornu
  11. Institut de Biologie Intégrative de la Cellule, CEA, Gif-sur-Yvette, France.

    • David Cornu
  12. Institut de Biologie Intégrative de la Cellule, Université Paris-Saclay, Gif-sur-Yvette, France.

    • David Cornu
  13. Division of Cell and Molecular Biology, Imperial College London, London, UK.

    • Colin Turnbull

Authors

  1. Search for Alexandre de Saint Germain in:

  2. Search for Guillaume Clavé in:

  3. Search for Marie-Ange Badet-Denisot in:

  4. Search for Jean-Paul Pillot in:

  5. Search for David Cornu in:

  6. Search for Jean-Pierre Le Caer in:

  7. Search for Marco Burger in:

  8. Search for Frank Pelissier in:

  9. Search for Pascal Retailleau in:

  10. Search for Colin Turnbull in:

  11. Search for Sandrine Bonhomme in:

  12. Search for Joanne Chory in:

  13. Search for Catherine Rameau in:

  14. Search for François-Didier Boyer in:

Contributions

A.d.S.G., G.C., J.C., C.R., F.-D.B. designed research; G.C. designed and synthesized the probes; G.C., F.-D.B. synthesized the other chemicals; A.d.S.G., M.-A.B.-D. produced and purified the proteins; A.d.S.G. characterized the proteins; A.d.S.G., G.C. did the kinetic experiments; A.d.S.G., J.-P.P., S.B., C.R., F.-D.B. performed the plant experiments; D.C., J.-P.L.C. performed the mass experiments; G.C., F.P., F.-D.B. performed the HPLC analyses and separations; P.R. did the x-ray analyses; M.B. did the protein modeling; C.T. performed strigolactone quantifications in pea; A.d.S.G., G.C., M.-A.B.-D., J.-P.L.C., P.R., C.T., J.C., S.B., C.R., F.-D.B. analyzed data; A.d.S.G., C.R., F.-D.B. wrote the paper.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Joanne Chory or Catherine Rameau or François-Didier Boyer.

Supplementary information

PDF files

  1. 1.

    Supplementary Text and Figures

    Supplementary Results, Supplementary Tables 1–6 and Supplementary Figures 1–30.

  2. 2.

    Supplementary Note

    Synthetic Procedures

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nchembio.2147

Further reading