Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

FRET binding antenna reports spatiotemporal dynamics of GDI–Cdc42 GTPase interactions

Abstract

Guanine-nucleotide dissociation inhibitors (GDIs) are negative regulators of Rho family GTPases that sequester the GTPases away from the membrane. Here we ask how GDI–Cdc42 interaction regulates localized Cdc42 activation for cell motility. The sensitivity of cells to overexpression of Rho family pathway components led us to a new biosensor, GDI.Cdc42 FLARE, in which Cdc42 is modified with a fluorescence resonance energy transfer (FRET) 'binding antenna' that selectively reports Cdc42 binding to endogenous GDIs. Similar antennae could also report GDI–Rac1 and GDI–RhoA interaction. Through computational multiplexing and simultaneous imaging, we determined the spatiotemporal dynamics of GDI–Cdc42 interaction and Cdc42 activation during cell protrusion and retraction. This revealed remarkably tight coordination of GTPase release and activation on a time scale of 10 s, suggesting that GDI–Cdc42 interactions are a critical component of the spatiotemporal regulation of Cdc42 activity, and not merely a mechanism for global sequestration of an inactivated pool of signaling molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design and validation of GDI.Cdc42 FLARE, a genetically encoded biosensor that reports localization of GDI–Cdc42 complexes.
Figure 2: GDI–Cdc42 complex localization in living cells.
Figure 3: Relationship between Cdc42 activation and GDI–Cdc42 localization monitored in the same cell.
Figure 4: Src-mediated phosphorylation of GDI at Y156 regulates the coordination of GDI–Cdc42 localization and Cdc42 activity in regions close to the edge.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Jaffe, A.B. & Hall, A. Rho GTPases: biochemistry and biology. Annu. Rev. Cell Dev. Biol. 21, 247–269 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Garcia-Mata, R., Boulter, E. & Burridge, K. The 'invisible hand': regulation of RHO GTPases by RHOGDIs. Nat. Rev. Mol. Cell Biol. 12, 493–504 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lawson, C.D. & Burridge, K. The on-off relationship of Rho and Rac during integrin-mediated adhesion and cell migration. Small GTPases 5, e27958 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Machacek, M. et al. Coordination of Rho GTPase activities during cell protrusion. Nature 461, 99–103 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Pertz, O., Hodgson, L., Klemke, R.L. & Hahn, K.M. Spatiotemporal dynamics of RhoA activity in migrating cells. Nature 440, 1069–1072 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Nalbant, P., Hodgson, L., Kraynov, V., Toutchkine, A. & Hahn, K.M. Activation of endogenous Cdc42 visualized in living cells. Science 305, 1615–1619 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Tsukada, Y. et al. Quantification of local morphodynamics and local GTPase activity by edge evolution tracking. PLoS Comput. Biol. 4, e1000223 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kurokawa, K. & Matsuda, M. Localized RhoA activation as a requirement for the induction of membrane ruffling. Mol. Biol. Cell 16, 4294–4303 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Itoh, R.E. et al. Activation of rac and cdc42 video imaged by fluorescent resonance energy transfer-based single-molecule probes in the membrane of living cells. Mol. Cell. Biol. 22, 6582–6591 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cherfils, J. & Zeghouf, M. Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol. Rev. 93, 269–309 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Chuang, T.H., Bohl, B.P. & Bokoch, G.M. Biologically active lipids are regulators of Rac.GDI complexation. J. Biol. Chem. 268, 26206–26211 (1993).

    CAS  PubMed  Google Scholar 

  12. Del Pozo, M.A. et al. Integrins regulate GTP-Rac localized effector interactions through dissociation of Rho-GDI. Nat. Cell Biol. 4, 232–239 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Ugolev, Y., Berdichevsky, Y., Weinbaum, C. & Pick, E. Dissociation of Rac1(GDP).RhoGDI complexes by the cooperative action of anionic liposomes containing phosphatidylinositol 3,4,5-trisphosphate, Rac guanine nucleotide exchange factor, and GTP. J. Biol. Chem. 283, 22257–22271 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Michaelson, D. et al. Differential localization of Rho GTPases in live cells: regulation by hypervariable regions and RhoGDI binding. J. Cell Biol. 152, 111–126 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. DerMardirossian, C., Rocklin, G., Seo, J.Y. & Bokoch, G.M. Phosphorylation of RhoGDI by Src regulates Rho GTPase binding and cytosol-membrane cycling. Mol. Biol. Cell 17, 4760–4768 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dovas, A. et al. Serine 34 phosphorylation of rho guanine dissociation inhibitor (RhoGDIalpha) links signaling from conventional protein kinase C to RhoGTPase in cell adhesion. J. Biol. Chem. 285, 23296–23308 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. DerMardirossian, C., Schnelzer, A. & Bokoch, G.M. Phosphorylation of RhoGDI by Pak1 mediates dissociation of Rac GTPase. Mol. Cell 15, 117–127 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Lang, P. et al. Protein kinase A phosphorylation of RhoA mediates the morphological and functional effects of cyclic AMP in cytotoxic lymphocytes. EMBO J. 15, 510–519 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tkachenko, E. et al. Protein kinase A governs a RhoA-RhoGDI protrusion-retraction pacemaker in migrating cells. Nat. Cell Biol. 13, 660–667 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ellerbroek, S.M., Wennerberg, K. & Burridge, K. Serine phosphorylation negatively regulates RhoA in vivo. J. Biol. Chem. 278, 19023–19031 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Forget, M.A., Desrosiers, R.R., Gingras, D. & Beliveau, R. Phosphorylation states of Cdc42 and RhoA regulate their interactions with Rho GDP dissociation inhibitor and their extraction from biological membranes. Biochem. J. 361, 243–254 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rizzo, M.A. & Piston, D.W. High-contrast imaging of fluorescent protein FRET by fluorescence polarization microscopy. Biophys. J. 88, L14–L16 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Nagai, T., Yamada, S., Tominaga, T., Ichikawa, M. & Miyawaki, A. Expanded dynamic range of fluorescent indicators for Ca2+ by circularly permuted yellow fluorescent proteins. Proc. Natl. Acad. Sci. USA 101, 10554–10559 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang, F., Moss, L.G. & Phillips, G.N. Jr. The molecular structure of green fluorescent protein. Nat. Biotechnol. 14, 1246–1251 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. DerMardirossian, C. & Bokoch, G.M. GDIs: central regulatory molecules in Rho GTPase activation. Trends Cell Biol. 15, 356–363 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. White, M.A. et al. Multiple Ras functions can contribute to mammalian cell transformation. Cell 80, 533–541 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Ellis, S. & Mellor, H. The novel Rho-family GTPase Rif regulates coordinated actin-based membrane rearrangements. Curr. Biol. 10, 1387–1390 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Takai, Y. et al. Rho small G protein and cytoskeletal control. Princess Takamatsu Symp. 24, 338–350 (1994).

    CAS  PubMed  Google Scholar 

  29. Toutchkine, A., Nguyen, D.V. & Hahn, K.M. Merocyanine dyes with improved photostability. Org. Lett. 9, 2775–2777 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Gossen, M. & Bujard, H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA 89, 5547–5551 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Boulter, E. et al. Regulation of Rho GTPase crosstalk, degradation and activity by RhoGDI1. Nat. Cell Biol. 12, 477–483 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang, Y. et al. Visualizing the mechanical activation of Src. Nature 434, 1040–1045 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Galbraith, C.G., Yamada, K.M. & Sheetz, M.P. The relationship between force and focal complex development. J. Cell Biol. 159, 695–705 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Aghazadeh, B., Lowry, W.E., Huang, X.Y. & Rosen, M.K. Structural basis for relief of autoinhibition of the Dbl homology domain of proto-oncogene Vav by tyrosine phosphorylation. Cell 102, 625–633 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Qiao, J. et al. Phosphorylation of GTP dissociation inhibitor by PKA negatively regulates RhoA. Am. J. Physiol. Cell Physiol. 295, C1161–C1168 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Morgenstern, J.P. & Land, H. Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res. 18, 3587–3596 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cai, L., Marshall, T.W., Uetrecht, A.C., Schafer, D.A. & Bear, J.E. Coronin 1B coordinates Arp2/3 complex and cofilin activities at the leading edge. Cell 128, 915–929 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Spiering, D. & Hodgson, L. Multiplex imaging of Rho family GTPase activities in living cells. Methods Mol. Biol. 827, 215–234 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hodgson, L., Shen, F. & Hahn, K. Biosensors for characterizing the dynamics of rho family GTPases in living cells. Curr. Protoc. Cell Biol. Chapter 14, Unit 14.11.1-26 (2010).

  40. Spiering, D., Bravo-Cordero, J.J., Moshfegh, Y., Miskolci, V. & Hodgson, L. Quantitative ratiometric imaging of FRET-biosensors in living cells. Methods Cell Biol. 114, 593–609 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Shen, F. et al. Functional proteometrics for cell migration. Cytometry A 69, 563–572 (2006).

    Article  PubMed  Google Scholar 

  42. Hodgson, L., Nalbant, P., Shen, F. & Hahn, K. Imaging and photobleach correction of Mero-CBD, sensor of endogenous Cdc42 activation. Methods Enzymol. 406, 140–156 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Machacek, M. & Danuser, G. Morphodynamic profiling of protrusion phenotypes. Biophys. J. 90, 1439–1452 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Efron, B. & Tibshirani, R. An Introduction to the Bootstrap (Chapman & Hall, New York, 1993).

  45. Efron, B. Bootstrap methods: another look at the jackknife. Ann. Stat. 7, 1–26 (1979).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the National Institute of General Medical Sciences (P01-GM103723 and T-R01 GM090317 to G.D. and K.M.H.; GM099837 to C.D.) and the National Cancer Institute (CA181838 to L.H.) for funding. O.D. is a Howard Hughes Medical Institute International Student Research Fellow. Mammalian expression cDNA constructs for Myc-WASP and HA-Tiam1 were gifts from D. Cox (Departments of Anatomy and Structural Biology and Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA). Myc-Intersectin1L was a gift from H. Bourne (Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California, USA). Myc-mDia2 was from S. Narumiya (Department of Pharmacology, University of Kyoto, Kyoto, Japan). PAK1 was from Y. Wu (Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA).

Author information

Authors and Affiliations

Authors

Contributions

L.H. and K.M.H. conceived the biosensor; L.H. optimized and built the biosensor; L.H., D.S. and G.D. designed and interpreted correlation experiments; L.H. and D.S. performed biological experiments; M.S.-G. and L.H. performed the computational analysis; O.D. and K.M.H. performed structural analysis and interpreted studies to examine the antennae mechanism; C.D. subcloned the shRNA expression constructs and gave critical feedback; and L.H., G.D. and K.M.H. wrote the manuscript with input from all other authors.

Corresponding authors

Correspondence to Louis Hodgson, Gaudenz Danuser or Klaus M Hahn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results and Supplementary Figures 1 – 11. (PDF 4517 kb)

An example of imaging GDI–Cdc42 binding using the wild-type GDI.Cdc42 FLARE biosensor. (MOV 12693 kb)

An example of imaging GDI–Cdc42 binding using the wild-type GDI.Cdc42 FLARE biosensor (MOV 12440 kb)

A zoomed example of imaging GDI–Cdc42 binding using the wild-type GDI.Cdc42 FLARE biosensor. (MOV 10960 kb)

A zoomed example of imaging GDI–Cdc42 binding using the wild-type GDI.Cdc42 FLARE biosensor. (MOV 12561 kb)

Imaging Cdc42 activity (left) and GDI–Cdc42 binding (T35S mutant version; right) in the same MEF cell. (MOV 12797 kb)

41589_2016_BFnchembio2145_MOESM122_ESM.mov

A zoomed example of Cdc42 activity (left) and GDI–Cdc42 binding (T35S mutant version; right) in the same MEF cell. (MOV 12655 kb)

41589_2016_BFnchembio2145_MOESM123_ESM.mov

A zoomed example of Cdc42 activity (left) and GDI–Cdc42 binding (T35S mutant version; right) in the same MEF cell. (MOV 12117 kb)

41589_2016_BFnchembio2145_MOESM124_ESM.mov

A cell in which GDI has been knocked down and rescued with Y156F mutant GDI. Cdc42 activity is shown on the left, and GDI–Cdc42 binding is shown on the right (T35S mutant version). (MOV 18327 kb)

A zoomed example of a cell in which GDI has been knocked down and rescued with a Y156F GDI mutant. (MOV 10142 kb)

A cell in which GDI has been knocked down and rescued with a Y156F GDI mutant. (MOV 9125 kb)

A zoomed example of a cell in which GDI has been knocked down and rescued with a Y156F GDI mutant. (MOV 10596 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hodgson, L., Spiering, D., Sabouri-Ghomi, M. et al. FRET binding antenna reports spatiotemporal dynamics of GDI–Cdc42 GTPase interactions. Nat Chem Biol 12, 802–809 (2016). https://doi.org/10.1038/nchembio.2145

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2145

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing