Brief Communication | Published:

A hybrid polyketide–nonribosomal peptide in nematodes that promotes larval survival

Nature Chemical Biology volume 12, pages 770772 (2016) | Download Citation

Abstract

Polyketides and nonribosomal peptides are two important types of natural products that are produced by many species of bacteria and fungi but are exceedingly rare in metazoans. Here, we elucidate the structure of a hybrid polyketide–nonribosomal peptide from Caenorhabditis elegans that is produced in the canal-associated neurons (CANs) and promotes survival during starvation-induced larval arrest. Our results uncover a novel mechanism by which animals respond to nutrient fluctuations to extend survival.

  • Compound

    2,2',2''-((2R,5R,8S,11R)-11-((2R,4S,5E,7E,9E)-2-hydroxy-4-methoxypentadeca-5,7,9-trien-1-yl)-3,6,9,13,17-pentaoxo-1,4,7,10,14-pentaazacycloheptadecane-2,5,8-triyl)triacetamide

  • Compound

    2,2',2''-((2R,5R,8S,11R)-11-((2R,4S,5E,7E,9E,11E)-2-hydroxy-4-methoxypentadeca-5,7,9,11-tetraen-1-yl)-3,6,9,13,17-pentaoxo-1,4,7,10,14-pentaazacycloheptadecane-2,5,8-triyl)triacetamide

  • Compound

    2,2',2''-((2R,5R,8S,11R)-11-methyl-3,6,9,13,17-pentaoxo-1,4,7,10,14-pentaazacycloheptadecane-2,5,8-triyl)triacetamide

  • Compound

    2,2',2''-((2R,5S,8R,11S)-11-methyl-3,6,9,13,17-pentaoxo-1,4,7,10,14-pentaazacycloheptadecane-2,5,8-triyl)triacetamide

  • Compound

    2,2',2''-((2S,5R,8R,11S)-11-methyl-3,6,9,13,17-pentaoxo-1,4,7,10,14-pentaazacycloheptadecane-2,5,8-triyl)triacetamide

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Trends Parasitol. 30, 445–455 (2014).

  2. 2.

    & Chem. Rev. 106, 3468–3496 (2006).

  3. 3.

    , , & Gene 392, 47–58 (2007).

  4. 4.

    et al. Zoological Lett. 1, 3 (2015).

  5. 5.

    , , & J. Antibiot. (Tokyo) 67, 89–97 (2014).

  6. 6.

    , , , & Proc. Natl. Acad. Sci. USA 111, 9259–9264 (2014).

  7. 7.

    et al. Anal. Chem. 86, 6931–6939 (2014).

  8. 8.

    & Curr. Prot. Toxicol. 31, 1.9.1–1.9.18 (2007).

  9. 9.

    & Amino Acids 27, 231–247 (2004).

  10. 10.

    & Molecules 16, 6092–6115 (2011).

  11. 11.

    , , , & J. Am. Chem. Soc. 127, 14986–14987 (2005).

  12. 12.

    et al. Nucleic Acids Res. 39, W362–W367 (2011).

  13. 13.

    & Nat. Prod. Rep. 27, 255–278 (2010).

  14. 14.

    , , & Genetics 148, 151–165 (1998).

  15. 15.

    Genetics 194, 539–555 (2013).

  16. 16.

    , , & Curr. Biol. 25, 1241–1248 (2015).

  17. 17.

    & PLoS Genet. 4, e1000213 (2008).

  18. 18.

    & Dev. Biol. 394, 314–326 (2014).

  19. 19.

    , & Sci. Rep. 3, 2777 (2013).

  20. 20.

    , & PLoS Biol. 3, e312 (2005).

  21. 21.

    & Curr. Biol. 16, 780–785 (2006).

  22. 22.

    et al. J. Magn. Reson. 235, 58–65 (2013).

  23. 23.

    et al. Nat. Biotechnol. 30, 918–920 (2012).

  24. 24.

    et al. PLoS Biol. 11, e1001465 (2013).

  25. 25.

    , , & Nat. Chem. Biol. 3, 420–422 (2007).

  26. 26.

    et al. Proc. Natl. Acad. Sci. USA 112, 3955–3960 (2015).

  27. 27.

    et al. Genome Res. 23, 954–965 (2013).

  28. 28.

    & Methods 25, 402–408 (2001).

  29. 29.

    , , , & Proc. Natl. Acad. Sci. USA 108, 17997–18002 (2011).

  30. 30.

    , , , & Mol. Biol. Evol. 30, 2725–2729 (2013).

  31. 31.

    et al. Nucleic Acids Res. 43, W1, W237–W243 (2015).

Download references

Acknowledgements

We thank A. Fire, A. Frand, N. Moghal and P. Sengupta for plasmids, J. Rocca for help with NMR acquisition, J. Johnson for MS–MS analysis, Y. Ding and Y. Zhang for help with Sybyl software, S. Hagan, G. Fanucci, and Z. Liu for help with CD spectroscopy, and Y. Zhu for help with calculating CD spectra. We acknowledge the CGC, which is funded by the NIH Office of Research Infrastructure Programs (P40 OD010440), and the NemaGENETAG consortium for providing strains. This work was supported by funds to R.A.B. from the NIH (GM118775), the NSF (1555050), the Ellison Medical Foundation (AG-NS-0963-12), the Alfred P. Sloan Foundation (BR2014-071), and the National High Magnetic Field Laboratory, which is supported by NSF Cooperative Agreement No. DMR-1157490 and the State of Florida.

Author information

Author notes

    • Qingyao Shou
    •  & Likui Feng

    These authors contributed equally to this work.

Affiliations

  1. Department of Chemistry, University of Florida, Gainesville, Florida, USA.

    • Qingyao Shou
    • , Likui Feng
    • , Yaoling Long
    • , Jungsoo Han
    • , Joshawna K Nunnery
    • , David H Powell
    •  & Rebecca A Butcher

Authors

  1. Search for Qingyao Shou in:

  2. Search for Likui Feng in:

  3. Search for Yaoling Long in:

  4. Search for Jungsoo Han in:

  5. Search for Joshawna K Nunnery in:

  6. Search for David H Powell in:

  7. Search for Rebecca A Butcher in:

Contributions

Q.S. purified and structurally characterized the nemamides. L.F. generated transgenic worm strains and performed biological assays. Y.L. performed metabolomic analyses. J.H. generated extracts. J.K.N. analyzed nemamide stability. Q.S., L.F., Y.L., D.H.P., and R.A.B. analyzed the data. R.A.B., Q.S., and L.F. wrote the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Rebecca A Butcher.

Supplementary information

PDF files

  1. 1.

    Supplementary Text and Figures

    Supplementary Results, Supplementary Figures 1–28 and Supplementary Tables 1–5

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nchembio.2144

Further reading