Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Inhibiting androgen receptor nuclear entry in castration-resistant prostate cancer

Abstract

Clinical resistance to the second-generation antiandrogen enzalutamide in castration-resistant prostate cancer (CRPC), despite persistent androgen receptor (AR) activity in tumors, highlights an unmet medical need for next-generation antagonists. We have identified and characterized tetra-aryl cyclobutanes (CBs) as a new class of competitive AR antagonists that exhibit a unique mechanism of action. These CBs are structurally distinct from current antiandrogens (hydroxyflutamide, bicalutamide, and enzalutamide) and inhibit AR-mediated gene expression, cell proliferation, and tumor growth in several models of CRPC. Conformational profiling revealed that CBs stabilize an AR conformation resembling an unliganded receptor. Using a variety of techniques, it was determined that the AR–CB complex was not recruited to AR-regulated promoters and, like apo AR, remains sequestered in the cytoplasm, bound to heat shock proteins. Thus, we have identified third-generation AR antagonists whose unique mechanism of action suggests that they may have therapeutic potential in CRPC.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: CBs compete with androgen binding to AR.
Figure 2: CBs inhibit AR activity in models of CRPC.
Figure 3: CBs are mechanistically distinct antiandrogens.
Figure 4: 10 inhibits nuclear localization of AR.
Figure 5: 10 does not promote cell growth in models of CRPC and inhibits tumor growth in a model of enzalutamide resistance.

References

  1. Siegel, R., Ma, J., Zou, Z. & Jemal, A. Cancer statistics, 2014. CA Cancer J. Clin. 64, 9–29 (2014).

    PubMed  Google Scholar 

  2. Rick, F.G. & Schally, A.V. Bench-to-bedside development of agonists and antagonists of luteinizing hormone-releasing hormone for treatment of advanced prostate cancer. Urol. Oncol. 33, 270–274 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Rick, F.G., Block, N.L. & Schally, A.V. An update on the use of degarelix in the treatment of advanced hormone-dependent prostate cancer. Onco Targets Ther. 6, 391–402 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen, Y., Sawyers, C.L. & Scher, H.I. Targeting the androgen receptor pathway in prostate cancer. Curr. Opin. Pharmacol. 8, 440–448 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Klein, K.A. et al. Progression of metastatic human prostate cancer to androgen independence in immunodeficient SCID mice. Nat. Med. 3, 402–408 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Edwards, J., Krishna, N.S., Grigor, K.M. & Bartlett, J.M. Androgen receptor gene amplification and protein expression in hormone refractory prostate cancer. Br. J. Cancer 89, 552–556 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Locke, J.A. et al. Androgen levels increase by intratumoral de novo steroidogenesis during progression of castration-resistant prostate cancer. Cancer Res. 68, 6407–6415 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Dehm, S.M. & Tindall, D.J. Alternatively spliced androgen receptor variants. Endocr. Relat. Cancer 18, R183–R196 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li, Y. et al. AR intragenic deletions linked to androgen receptor splice variant expression and activity in models of prostate cancer progression. Oncogene 31, 4759–4767 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nakazawa, M., Antonarakis, E.S. & Luo, J. Androgen receptor splice variants in the era of enzalutamide and abiraterone. Horm. Cancer 5, 265–273 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen, C.D. et al. Molecular determinants of resistance to antiandrogen therapy. Nat. Med. 10, 33–39 (2004).

    Article  PubMed  Google Scholar 

  12. Beltran, H. et al. Targeted next-generation sequencing of advanced prostate cancer identifies potential therapeutic targets and disease heterogeneity. Eur. Urol. 63, 920–926 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Hara, T. et al. Novel mutations of androgen receptor: a possible mechanism of bicalutamide withdrawal syndrome. Cancer Res. 63, 149–153 (2003).

    CAS  PubMed  Google Scholar 

  14. Veldscholte, J. et al. A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to anti-androgens. Biochem. Biophys. Res. Commun. 173, 534–540 (1990).

    Article  CAS  PubMed  Google Scholar 

  15. Clegg, N.J. et al. ARN-509: a novel antiandrogen for prostate cancer treatment. Cancer Res. 72, 1494–1503 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tran, C. et al. Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science 324, 787–790 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Joseph, J.D. et al. A clinically relevant androgen receptor mutation confers resistance to second-generation antiandrogens enzalutamide and ARN-509. Cancer Discov. 3, 1020–1029 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Korpal, M. et al. An F876L mutation in androgen receptor confers genetic and phenotypic resistance to MDV3100 (enzalutamide). Cancer Discov. 3, 1030–1043 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Parent, A.A., Gunther, J.R. & Katzenellenbogen, J.A. Blocking estrogen signaling after the hormone: pyrimidine-core inhibitors of estrogen receptor-coactivator binding. J. Med. Chem. 51, 6512–6530 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Parent, A.A., Ess, D.H. & Katzenellenbogen, J.A. π-π interaction energies as determinants of the photodimerization of mono-, di-, and triazastilbenes. J. Org. Chem. 79, 5448–5462 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Balbas, M.D. et al. Overcoming mutation-based resistance to antiandrogens with rational drug design. eLife 2, e00499 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Norris, J.D. et al. Differential presentation of protein interaction surfaces on the androgen receptor defines the pharmacological actions of bound ligands. Chem. Biol. 16, 452–460 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Joseph, J.D. et al. Inhibition of prostate cancer cell growth by second-site androgen receptor antagonists. Proc. Natl. Acad. Sci. USA 106, 12178–12183 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yin, D. et al. Pharmacodynamics of selective androgen receptor modulators. J. Pharmacol. Exp. Ther. 304, 1334–1340 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Gillis, J.L. et al. Constitutively-active androgen receptor variants function independently of the HSP90 chaperone but do not confer resistance to HSP90 inhibitors. Oncotarget 4, 691–704 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ni, L. et al. FKBP51 promotes assembly of the Hsp90 chaperone complex and regulates androgen receptor signaling in prostate cancer cells. Mol. Cell. Biol. 30, 1243–1253 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Oh, S., Nam, H.J., Park, J., Beak, S.H. & Park, S.B. Development of a benzopyran-containing androgen receptor antagonist to treat antiandrogen-resistant prostate cancer. ChemMedChem 5, 529–533 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Wakabayashi, K., Imai, K., Miyachi, H., Hashimoto, Y. & Tanatani, A. 4-(Anilino)pyrrole-2-carboxamides: novel non-steroidal/non-anilide type androgen antagonists effective upon human prostate tumor LNCaP cells with mutated nuclear androgen receptor. Bioorg. Med. Chem. 16, 6799–6812 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Yamamoto, S. et al. Design, synthesis, and biological evaluation of 3-aryl-3-hydroxy-1-phenylpyrrolidine derivatives as novel androgen receptor antagonists. Bioorg. Med. Chem. 21, 70–83 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Kuruma, H. et al. A novel antiandrogen, Compound 30, suppresses castration-resistant and MDV3100-resistant prostate cancer growth in vitro and in vivo. Mol. Cancer Ther. 12, 567–576 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Bollag, G. et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 467, 596–599 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Flaherty, K. et al. Phase I study of PLX4032: proof of concept for V600E BRAF mutation as a therapeutic target in human cancer. J. Clin. Oncol. 27, abstr. 9000 (2009).

  33. Flaherty, K.T. et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N. Engl. J. Med. 363, 809–819 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Davis, R.A. et al. Endiandrin A, a potent glucocorticoid receptor binder isolated from the Australian plant Endiandra anthropophagorum. J. Nat. Prod. 70, 1118–1121 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Dembitsky, V.M. Bioactive cyclobutane-containing alkaloids. J. Nat. Med. 62, 1–33 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Lu, Y. & Foo, L.Y. Rosmarinic acid derivatives from Salvia officinalis. Phytochemistry 51, 91–94 (1999).

    Article  CAS  Google Scholar 

  37. Pearce, A.N. et al. Orthidines A–E, tubastrine, 3,4-dimethoxyphenethyl-β-guanidine, and 1,14-sperminedihomovanillamide: potential anti-inflammatory alkaloids isolated from the New Zealand ascidian Aplidium orthium that act as inhibitors of neutrophil respiratory burst. Tetrahedron 64, 5748–5755 (2008).

    Article  CAS  Google Scholar 

  38. Sagawa, T. et al. Cyclobutane dimers from the Colombian medicinal plant Achyrocline bogotensis. J. Nat. Prod. 68, 502–505 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Watanabe, K. et al. Sarusubine A, a new dimeric Lythraceae alkaloid from Lagerstroemia subcostata. Tetrahedr. Lett. 48, 7502–7504 (2007).

    Article  CAS  Google Scholar 

  40. Chen, D. et al. A nonpeptidic agonist of glucagon-like peptide 1 receptors with efficacy in diabetic db/db mice. Proc. Natl. Acad. Sci. USA 104, 943–948 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hockemeyer, J., Burbiel, J.C. & Müller, C.E. Multigram-scale syntheses, stability, and photoreactions of A2A adenosine receptor antagonists with 8-styrylxanthine structure: potential drugs for Parkinson’s disease. J. Org. Chem. 69, 3308–3318 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Liu, Q. et al. Cyclobutane derivatives as novel nonpeptidic small molecule agonists of glucagon-like peptide-1 receptor. J. Med. Chem. 55, 250–267 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Fernández, D., Torres, E., Avilés, F.X., Ortuño, R.M. & Vendrell, J. Cyclobutane-containing peptides: evaluation as novel metallocarboxypeptidase inhibitors and modelling of their mode of action. Bioorg. Med. Chem. 17, 3824–3828 (2009).

    Article  PubMed  Google Scholar 

  44. Cesarone, C.F., Bolognesi, C. & Santi, L. Improved microfluorometric DNA determination in biological material using 33258 Hoechst. Anal. Biochem. 100, 188–197 (1979).

    Article  CAS  PubMed  Google Scholar 

  45. Norris, J.D. et al. The homeodomain protein HOXB13 regulates the cellular response to androgens. Mol. Cell 36, 405–416 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the CDMRP (Synergistic Idea Development Award W81XWH-10-1-0179 to D.P.M. and J.A.K.), the NIH (PHS5R01DK015556 to J.A.K.), and the DOD (W81XWH-13-1-0196 to J.D.N.). J.A.P. was supported by an NIH Training grant (T32ES007326). A.A.P. was supported by NIH NRSA (1 F30 DK083899). We would like to thank J.R. Gunther, K.E. Carlson, and T.A. Martin for their early contributions to the project. We are thankful to P. Fan for performing the LC/MS/MS assays within the PK/PD Core Laboratory. I.S. is grateful for the support of the Pharmaceutical Research Shared resource–PK/PD Core laboratory by NIH/NCI Core Grant, 5-P30-CA14236-29.

Author information

Authors and Affiliations

Authors

Contributions

J.A.P., S.E.W., and A.A.P. contributed equally to this work. A.A.P., J.A.P., S.E.W., J.D.N., D.B.S., S.J.E., H.M.A., C.A.C., S.A.L., I.S., J.G.B., S.H.K., and J.P.S. carried out experiments and analyzed the data. S.E.W., H.M.A., and C.A.C. carried out animal experiments. I.S. designed and carried out PK study. J.A.P., J.D.N., S.E.W., A.A.P., D.P.M., and J.A.K. conceived the project, designed experiments, and wrote the manuscript.

Corresponding author

Correspondence to John D Norris.

Ethics declarations

Competing interests

A patent covering this work has been published (Publication No. WO 2015/048246).

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–3 and Supplementary Figures 1–12. (PDF 1218 kb)

Supplementary Note

Synthetic Procedures (PDF 4106 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pollock, J., Wardell, S., Parent, A. et al. Inhibiting androgen receptor nuclear entry in castration-resistant prostate cancer. Nat Chem Biol 12, 795–801 (2016). https://doi.org/10.1038/nchembio.2131

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2131

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer