Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

How curved membranes recruit amphipathic helices and protein anchoring motifs

Abstract

Lipids and several specialized proteins are thought to be able to sense the curvature of membranes (MC). Here we used quantitative fluorescence microscopy to measure curvature-selective binding of amphipathic motifs on single liposomes 50–700 nm in diameter. Our results revealed that sensing is predominantly mediated by a higher density of binding sites on curved membranes instead of higher affinity. We proposed a model based on curvature-induced defects in lipid packing that related these findings to lipid sorting and accurately predicted the existence of a new ubiquitous class of curvature sensors: membrane-anchored proteins. The fact that unrelated structural motifs such as α-helices and alkyl chains sense MC led us to propose that MC sensing is a generic property of curved membranes rather than a property of the anchoring molecules. We therefore anticipate that MC will promote the redistribution of proteins that are anchored in membranes through other types of hydrophobic moieties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A fluorescence-based assay to measure MC-selective binding of biomolecules on single liposomes.
Figure 2: Quantification of the parameters governing the MC-selective binding of two amphipathic motifs, eAH and aAH, on single liposomes.
Figure 3: Model explaining MC sensing by amphiphilic molecules at saturating concentration.
Figure 4: MC sensing by alkyl chains.
Figure 5: MC sensing by proteins carrying alkyl chain membrane anchors.
Figure 6: Dependence of binding affinity and Bmax on MC for double palmitoylated GST.

Similar content being viewed by others

References

  1. Zimmerberg, J. & Kozlov, M.M. How proteins produce cellular membrane curvature. Nat. Rev. Mol. Cell Biol. 7, 9–19 (2006).

    Article  CAS  Google Scholar 

  2. McMahon, H.T. & Gallop, J.L. Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438, 590–596 (2005).

    Article  CAS  Google Scholar 

  3. Voeltz, G.K. & Prinz, W.A. Sheets, ribbons and tubules - how organelles get their shape. Nat. Rev. Mol. Cell Biol. 8, 258–264 (2007).

    Article  CAS  Google Scholar 

  4. Farsad, K. & De Camilli, P. Mechanisms of membrane deformation. Curr. Opin. Cell Biol. 15, 372–381 (2003).

    Article  CAS  Google Scholar 

  5. Parthasarathy, R. & Groves, J.T. Curvature and spatial organization in biological membranes. Soft Matter 3, 24–33 (2007).

    Article  CAS  Google Scholar 

  6. Engelman, D.M. Membranes are more mosaic than fluid. Nature 438, 578–580 (2005).

    Article  CAS  Google Scholar 

  7. Peter, B.J. et al. BAR domains as sensors of membrane curvature: The amphiphysin BAR structure. Science 303, 495–499 (2004).

    Article  CAS  Google Scholar 

  8. Drin, G. et al. A general amphipathic alpha-helical motif for sensing membrane curvature. Nat. Struct. Mol. Biol. 14, 138–146 (2007).

    Article  CAS  Google Scholar 

  9. Cornell, R.B. & Taneva, S.G. Amphipathic helices as mediators of the membrane interaction of amphitropic proteins, and as modulators of bilayer physical properties. Curr. Protein Pept. Sci. 7, 539–552 (2006).

    Article  CAS  Google Scholar 

  10. Roux, A. et al. Role of curvature and phase transition in lipid sorting and fission of membrane tubules. EMBO J. 24, 1537–1545 (2005).

    Article  CAS  PubMed Central  Google Scholar 

  11. Maxfield, F.R. & McGraw, T.E. Endocytic recycling. Nat. Rev. Mol. Cell Biol. 5, 121–132 (2004).

    Article  CAS  Google Scholar 

  12. Baumgart, T., Hess, S.T. & Webb, W.W. Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 425, 821–824 (2003).

    Article  CAS  Google Scholar 

  13. Bigay, J., Gounon, P., Robineau, S. & Antonny, B. Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature. Nature 426, 563–566 (2003).

    Article  CAS  Google Scholar 

  14. Taylor, K.M.P. & Roseman, M.A. Effect of cholesterol, fatty acyl-chain composition, and bilayer curvature on the interaction of cytochrome B(5) with liposomes of phosphatidylcholines. Biochemistry 34, 3841–3850 (1995).

    Article  CAS  Google Scholar 

  15. Wieprecht, T., Beyermann, M. & Seelig, J. Thermodynamics of the coil-alpha-helix transition of amphipathic peptides in a membrane environment: the role of vesicle curvature. Biophys. Chem. 96, 191–201 (2002).

    Article  CAS  Google Scholar 

  16. Seelig, J. Thermodynamics of lipid-peptide interactions. Biochim. Biophys. Acta 1666, 40–50 (2004).

    Article  CAS  Google Scholar 

  17. Kunding, A.H., Mortensen, M.W., Christensen, S.M. & Stamou, D. A fluorescence-based technique to construct size distributions from single-object measurements: application to the extrusion of lipid vesicles. Biophys. J. 95, 1176–1188 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  18. Lee, M.C.S. et al. Sar1p N-terminal helix initiates membrane curvature and completes the fission of a COPII vesicle. Cell 122, 605–617 (2005).

    Article  CAS  Google Scholar 

  19. Drin, G., Morello, V., Casella, J.F., Gounon, P. & Antonny, B. Asymmetric tethering of flat and curved lipid membranes by a golgin. Science 320, 670–673 (2008).

    Article  CAS  Google Scholar 

  20. Ford, M.G.J. et al. Curvature of clathrin-coated pits driven by epsin. Nature 419, 361–366 (2002).

    Article  CAS  Google Scholar 

  21. Nuscher, B. α-synuclein has a high affinity for packing defects in a bilayer membrane—a thermodynamics study. J. Biol. Chem. 279, 21966–21975 (2004).

    Article  CAS  Google Scholar 

  22. Gallop, J.L. et al. Mechanism of endophilin N-BAR domain-mediated membrane curvature. EMBO J. 25, 2898–2910 (2006).

    Article  CAS  PubMed Central  Google Scholar 

  23. Stamou, D., Duschl, C., Delamarche, E. & Vogel, H. Self-assembled microarrays of attoliter molecular vessels. Angew. Chem. Int. Ed. 42, 5580–5583 (2003).

    Article  CAS  Google Scholar 

  24. Yoon, T.Y., Okumus, B., Zhang, F., Shin, Y.K. & Ha, T. Multiple intermediates in SNARE-induced membrane fusion. Proc. Natl. Acad. Sci. USA 103, 19731–19736 (2006).

    Article  CAS  Google Scholar 

  25. Chan, Y.H.M., Lenz, P. & Boxer, S.G. Kinetics of DNA-mediated docking reactions between vesicles tethered to supported lipid bilayers. Proc. Natl. Acad. Sci. USA 104, 18913–18918 (2007).

    Article  CAS  Google Scholar 

  26. Christensen, S.M. & Stamou, D. Surface-based lipid vesicle reactor systems: fabrication and applications. Soft Matter 3, 828–836 (2007).

    Article  CAS  Google Scholar 

  27. Kuyper, C.L., Kuo, J.S., Mutch, S.A. & Chiu, D.T. Proton permeation into single vesicles occurs via a sequential two-step mechanism and is heterogeneous. J. Am. Chem. Soc. 128, 3233–3240 (2006).

    Article  CAS  Google Scholar 

  28. Bendix, P.M., Pedersen, M.S. & Stamou, D. Quantification of nano-scale intermembrane contact areas by using fluorescence resonance energy transfer. Proc. Natl. Acad. Sci. USA 106, 12341–12346 (2009).

    Article  CAS  Google Scholar 

  29. Bhatia, V.K. et al. Amphipathic motifs in BAR domains are essential for membrane curvature sensing. EMBO J. (in the press).

  30. Mesmin, B. et al. Two lipid-packing sensor motifs contribute to the sensitivity of ArfGAP1 to membrane curvature. Biochemistry 46, 1779–1790 (2007).

    Article  CAS  Google Scholar 

  31. Stahelin, R.V. et al. Contrasting membrane interaction mechanisms of AP180 N-terminal homology (ANTH) and epsin N-terminal homology (ENTH) domains. J. Biol. Chem. 278, 28993–28999 (2003).

    Article  CAS  Google Scholar 

  32. Huang, C. & Mason, J.T. Geometric packing constraints in egg phosphatidylcholine vesicles. Proc. Natl. Acad. Sci. USA 75, 308–310 (1978).

    Article  CAS  Google Scholar 

  33. Yeung, T. et al. Membrane phosphatidylserine regulates surface charge and protein localization. Science 319, 210–213 (2008).

    Article  CAS  Google Scholar 

  34. McLaughlin, S. & Murray, D. Plasma membrane phosphoinositide organization by protein electrostatics. Nature 438, 605–611 (2005).

    Article  CAS  Google Scholar 

  35. Linder, M.E. & Deschenes, R.J. Palmitoylation: policing protein stability and traffic. Nat. Rev. Mol. Cell Biol. 8, 74–84 (2007).

    Article  CAS  Google Scholar 

  36. Rocks, O. et al. An acylation cycle regulates localization and activity of palmitoylated Ras isoforms. Science 307, 1746–1752 (2005).

    Article  CAS  Google Scholar 

  37. Manneville, J.B. et al. COPI coat assembly occurs on liquid-disordered domains and the associated membrane deformations are limited by membrane tension. Proc. Natl. Acad. Sci. USA 105, 16946–16951 (2008).

    Article  CAS  Google Scholar 

  38. Lemmon, M.A. Membrane recognition by phospholipid-binding domains. Nat. Rev. Mol. Cell Biol. 9, 99–111 (2008).

    Article  CAS  Google Scholar 

  39. Resh, M.D. Trafficking and signaling by fatty-acylated and prenylated proteins. Nat. Chem. Biol. 2, 584–590 (2006).

    Article  CAS  Google Scholar 

  40. Kang, R.J. et al. Neural palmitoyl-proteomics reveals dynamic synaptic palmitoylation. Nature 456, 904–909 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  41. Peitzsch, R.M. & McLaughlin, S. Binding of acylated peptides and fatty-acids to phospholipid-vesicles—pertinence to myristoylated proteins. Biochemistry 32, 10436–10443 (1993).

    Article  CAS  Google Scholar 

  42. Silvius, J.R. & Lheureux, F. Fluorometric evaluation of the affinities of isoprenylated peptides for lipid bilayers. Biochemistry 33, 3014–3022 (1994).

    Article  CAS  Google Scholar 

  43. Kozasa, T. Purification of recombinant G protein α and βγ subunits from Sf9 cells. in G-protein Techniques of Analysis 1st edn, vol. 1 (ed. Manning, D.R.) 23–38 (CRC Press, Washington, D.C., 1999).

    Google Scholar 

  44. Sorre, B. et al. Curvature-driven lipid sorting needs proximity to a demixing point and is aided by proteins. Proc. Natl. Acad. Sci. USA 106, 5622–5626 (2009).

    Article  CAS  Google Scholar 

  45. Tian, A. & Baumgart, T. Sorting of lipids and proteins in membrane curvature gradients. Biophys. J. 96, 2676–2688 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  46. Muddana, H.S., Gullapalli, R.R., Tabouillot, T. & Butler, P.J. Physiological membrane tension causes an increase in lipid diffusion: a single molecule fluorescence study. Biophys. J. 96 (suppl. 1): 197a–198a (2009).

    Article  Google Scholar 

  47. Gazzara, J.A. et al. Effect of vesicle size on their interaction with class A amphipathic helical peptides. J. Lipid Res. 38, 2147–2154 (1997).

    CAS  PubMed  Google Scholar 

  48. Ramamurthi, K.S., Lecuyer, S., Stone, H.A. & Losick, R. Geometric cue for protein localization in a bacterium. Science 323, 1354–1357 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  49. Martens, S., Kozlov, M.M. & McMahon, H.T. How synaptotagmin promotes membrane fusion. Science 316, 1205–1208 (2007).

    Article  CAS  Google Scholar 

  50. Ramachandran, R. & Schmid, S.L. Real-time detection reveals that effectors couple dynamin's GTP-dependent conformational changes to the membrane. EMBO J. 27, 27–37 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Wennerstrom, T. Heimburg and T. Bjornholm for critically reading the manuscript; J.-B. Perez and K.L. Martinez for help with data treatment; N. Kirkby (University of Copenhagen Hospital, Rigshospitalet, Department of Clinical Microbiology) for providing palmitoylated ovalbumin; J.L. Baneres (Institut des Biomolécules Max Mousseron, University of Montpellier) for the generous contribution of Gβ1γ2 and H. McMahon (MRC Laboratory of Molecular Biology) for kindly providing the plasmid for rat endophilin A1. This work was supported by the Danish Councils for Scientific and Strategic Research and partly by the European Union FP6–2004–IST–4 program NEMOSLAB.

Author information

Authors and Affiliations

Authors

Contributions

V.K.B. developed the assay; N.S.H. designed most experiments and recorded and treated most data with help from J.L., V.K.B., P.-Y.B. and J.C.; A.H.K. developed the image treatment; K.L.M. purified and labeled the AH and GST constructs; P.H. helped formulate the model; D.S. designed and supervised the project and wrote the main text together with N.S.H. and V.K.B. The manuscript was discussed and corrected by all co-authors.

Corresponding author

Correspondence to Dimitrios Stamou.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 6702 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hatzakis, N., Bhatia, V., Larsen, J. et al. How curved membranes recruit amphipathic helices and protein anchoring motifs. Nat Chem Biol 5, 835–841 (2009). https://doi.org/10.1038/nchembio.213

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.213

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing