Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Small-molecule antagonists of germination of the parasitic plant Striga hermonthica

Abstract

Striga spp. (witchweed) is an obligate parasitic plant that attaches to host roots to deplete them of nutrients. In Sub-Saharan Africa, the most destructive Striga species, Striga hermonthica, parasitizes major food crops affecting two-thirds of the arable land and over 100 million people. One potential weakness in the Striga infection process is the way it senses the presence of a host crop. Striga only germinates in the presence of the plant hormone strigolactone, which exudes from a host root. Hence small molecules that perturb strigolactone signaling may be useful tools for disrupting the Striga lifecycle. Here we developed a chemical screen to suppress strigolactone signaling in the model plant Arabidopsis. One compound, soporidine, specifically inhibited a S. hermonthica strigolactone receptor and inhibited the parasite's germination. This indicates that strigolactone-based screens using Arabidopsis are useful in identifying lead compounds to combat Striga infestations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Screen to identify SL antagonists.
Figure 2: RG compounds specifically interfere with SL signaling.
Figure 3: Biochemical characterization of SOP action.
Figure 4: SOP binds AtHTL.
Figure 5: SOP inhibits Striga germination and ShHTL7 action.

Similar content being viewed by others

Accession codes

Accessions

NCBI Reference Sequence

References

  1. Gomez-Roldan, V. et al. Strigolactone inhibition of shoot branching. Nature 455, 189–194 (2008).

    Article  CAS  Google Scholar 

  2. Umehara, M. et al. Inhibition of shoot branching by new terpenoid plant hormones. Nature 455, 195–200 (2008).

    Article  CAS  Google Scholar 

  3. Toh, S. et al. Thermoinhibition uncovers a role for strigolactones in Arabidopsis seed germination. Plant Cell Physiol. 53, 107–117 (2012).

    Article  CAS  Google Scholar 

  4. Tsuchiya, Y. et al. A small-molecule screen identifies new functions for the plant hormone strigolactone. Nat. Chem. Biol. 6, 741–749 (2010).

    Article  CAS  Google Scholar 

  5. Akiyama, K., Matsuzaki, K. & Hayashi, H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435, 824–827 (2005).

    Article  CAS  Google Scholar 

  6. Parker, C. Observations on the current status of Orobanche and Striga problems worldwide. Pest Manag. Sci. 65, 453–459 (2009).

    Article  CAS  Google Scholar 

  7. Johnson, A.W., Rosebery, G. & Parker, C. A novel approach to Striga and Orobanche control using synthetic germination stimulants. Weed Res. 16, 223–227 (1976).

    Article  CAS  Google Scholar 

  8. Zwanenburg, B., Nayak, S.K., Charnikhova, T.V. & Bouwmeester, H.J. New strigolactone mimics: structure-activity relationship and mode of action as germinating stimulants for parasitic weeds. Bioorg. Med. Chem. Lett. 23, 5182–5186 (2013).

    Article  CAS  Google Scholar 

  9. Toh, S., Holbrook-Smith, D., Stokes, M.E., Tsuchiya, Y. & McCourt, P. Detection of parasitic plant suicide germination compounds using a high-throughput Arabidopsis HTL/KAI2 strigolactone perception system. Chem. Biol. 21, 988–998 (2014).

    Article  CAS  Google Scholar 

  10. Zwanenburg, B., Mwakaboko, A.S. & Kannan, C. Perspective of suicidal germination for parasitic weeds control. Pest Manag. Sci. http://dx.doi.org/10.1002/ps.4222 (2016).

  11. Samejima, H., Babiker, A.G., Takikawa, H., Sasaki, M. & Sugimoto, Y. Practicality of the suicidal germination approach for controlling Striga hermonthica. Pest Manag. Sci. 10.1002/ps.4215 (2016).

  12. Cook, C.E., Whichard, L.P., Turner, B., Wall, M.E. & Egley, G.H. Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science 154, 1189–1190 (1966).

    Article  CAS  Google Scholar 

  13. Umehara, M. et al. Structural requirements of strigolactones for shoot branching inhibition in rice and Arabidopsis. Plant Cell Physiol. 56, 1059–1072 (2015).

    Article  CAS  Google Scholar 

  14. Zhao, L.H. et al. Destabilization of strigolactone receptor DWARF14 by binding of ligand and E3-ligase signaling effector DWARF3. Cell Res. 25, 1219–1236 (2015).

    Article  CAS  Google Scholar 

  15. Waters, M.T. et al. Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis. Development 139, 1285–1295 (2012).

    Article  CAS  Google Scholar 

  16. Scaffidi, A. et al. Strigolactone hormones and their stereoisomers signal through two related receptor proteins to induce different physiological responses in Arabidopsis. Plant Physiol. 165, 1221–1232 (2014).

    Article  CAS  Google Scholar 

  17. Nelson, D.C. et al. F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 108, 8897–8902 (2011).

    Article  CAS  Google Scholar 

  18. Wallace, I.M. et al. Compound prioritization methods increase rates of chemical probe discovery in model organisms. Chem. Biol. 18, 1273–1283 (2011).

    Article  CAS  Google Scholar 

  19. Lomenick, B., Jung, G., Wohlschlegel, J.A. & Huang, J. Target identification using drug affinity responsive target stability (DARTS). Curr. Protoc. Chem. Biol. 3, 163–180 (2011).

    PubMed  PubMed Central  Google Scholar 

  20. Tsuchiya, Y. et al. Probing strigolactone receptors in Striga hermonthica with fluorescence. Science 349, 864–868 (2015).

    Article  CAS  Google Scholar 

  21. Ueguchi-Tanaka, M. et al. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437, 693–698 (2005).

    Article  CAS  Google Scholar 

  22. Toh, S. et al. Structure-function analysis identifies highly sensitive strigolactone receptors in Striga. Science 350, 203–207 (2015).

    Article  CAS  Google Scholar 

  23. Koornneef, M. & van der Veen, J.H. Induction and analysis of gibberellin sensitive mutants in Arabidopsis thaliana (L.) heynh. Theor. Appl. Genet. 58, 257–263 (1980).

    Article  CAS  Google Scholar 

  24. Teka, H.B. Advance research on Striga control: a review. Afr. J. Plant Sci. 8, 492–506 (2014).

    Google Scholar 

  25. Huang, K., Whitlock, R., Press, M.C. & Scholes, J.D. Variation for host range within and among populations of the parasitic plant Striga hermonthica. Heredity 108, 96–104 (2012).

    Article  CAS  Google Scholar 

  26. Conn, C.E. et al. PLANT EVOLUTION. Convergent evolution of strigolactone perception enabled host detection in parasitic plants. Science 349, 540–543 (2015).

    Article  CAS  Google Scholar 

  27. Berner, D., Ikie, F.O. & Green, J.M. ALS-inhibiting herbicide seed treatments control Striga hermonthica in ALS-modified corn (Zea mays). Weed Technol. 11, 704–707 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge support from National Science & Engineering Research Council of Canada (NSERC 300001) to P.M. D.H.-S. was partially supported on an NSERC Postgraduate Scholarship–Doctoral (PGS D).

Author information

Authors and Affiliations

Authors

Contributions

D.H.-S. designed the study with P.M., and D.H.-S. conducted the chemical screen, yeast two-hybrid, DARTS, YLG hydrolysis and intrinsic fluorescence assays. D.H.-S. also performed the statistical analysis. S.T. and D.H.-S. performed the hypocotyl-based retest experiments and rice growth experiments. D.H.-S. and P.M. wrote the first draft of the manuscript, and Y.T. and S.T. contributed to subsequent revisions of the manuscript.

Corresponding author

Correspondence to Peter McCourt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Table 1 and Supplementary Figures 1–8. (PDF 3775 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holbrook-Smith, D., Toh, S., Tsuchiya, Y. et al. Small-molecule antagonists of germination of the parasitic plant Striga hermonthica. Nat Chem Biol 12, 724–729 (2016). https://doi.org/10.1038/nchembio.2129

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2129

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing