Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Precursors of tRNAs are stabilized by methylguanosine cap structures

Abstract

Efficient maturation of transfer RNAs (tRNAs) is required for rapid cell growth. However, the precise timing of tRNA processing in coordination with the order of tRNA modifications has not been thoroughly elucidated. To analyze the modification status of tRNA precursors (pre-tRNAs) during maturation, we isolated pre-tRNAs at various stages from Saccharomyces cerevisiae and subjected them to MS analysis. We detected methylated guanosine cap structures at the 5′ termini of pre-tRNAs bearing 5′ leader sequences. These capped pre-tRNAs accumulated substantially after inhibition of RNase P activity. Upon depletion of the capping enzyme Ceg1p, the steady state level of capped pre-tRNA was markedly reduced. In addition, a population of capped pre-tRNAs accumulated in strains in which 5′ exonucleases were inhibited, indicating that the 5′ cap structures protect pre-tRNAs from 5′-exonucleolytic degradation during maturation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: tRNA maturation in S. cerevisiae and accumulation of pre-tRNA in RNase P–repressed cells.
Figure 2: Methylguanosine cap structures found at 5′ termini of precursors from intronless tRNA genes in RNase P–repressed cells of S. cerevisiae.
Figure 3: Pre-tRNA capping of the intron-containing tRNAs in RNase P–repressed cells of S. cerevisiae.
Figure 4: Pre-tRNA capping in normally growing WT cells of S. cerevisiae.
Figure 5: Biosynthesis of pre-tRNA capping.
Figure 6: Pre-tRNA capping protects tRNA precursors from 5′-exonucleolytic degradation.

Similar content being viewed by others

References

  1. Hopper, A.K. Transfer RNA post-transcriptional processing, turnover, and subcellular dynamics in the yeast Saccharomyces cerevisiae. Genetics 194, 43–67 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Phizicky, E.M. & Hopper, A.K. tRNA biology charges to the front. Genes Dev. 24, 1832–1860 (2010).

    PubMed  PubMed Central  Google Scholar 

  3. Chan, P.P. & Lowe, T.M. GtRNAdb: a database of transfer RNA genes detected in genomic sequence. Nucleic Acids Res. 37, D93–D97 (2009).

    CAS  PubMed  Google Scholar 

  4. Thompson, M., Haeusler, R.A., Good, P.D. & Engelke, D.R. Nucleolar clustering of dispersed tRNA genes. Science 302, 1399–1401 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Skowronek, E., Grzechnik, P., Späth, B., Marchfelder, A. & Kufel, J. tRNA 3′ processing in yeast involves tRNase Z, Rex1, and Rrp6. RNA 20, 115–130 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Aebi, M. et al. Isolation of a temperature-sensitive mutant with an altered tRNA nucleotidyltransferase and cloning of the gene encoding tRNA nucleotidyltransferase in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 265, 16216–16220 (1990).

    CAS  PubMed  Google Scholar 

  7. Sarkar, S. & Hopper, A.K. tRNA nuclear export in Saccharomyces cerevisiae: in situ hybridization analysis. Mol. Biol. Cell 9, 3041–3055 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hellmuth, K. et al. Yeast Los1p has properties of an exportin-like nucleocytoplasmic transport factor for tRNA. Mol. Cell. Biol. 18, 6374–6386 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Yoshihisa, T., Yunoki-Esaki, K., Ohshima, C., Tanaka, N. & Endo, T. Possibility of cytoplasmic pre-tRNA splicing: the yeast tRNA splicing endonuclease mainly localizes on the mitochondria. Mol. Biol. Cell 14, 3266–3279 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Shaheen, H.H. & Hopper, A.K. Retrograde movement of tRNAs from the cytoplasm to the nucleus in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 102, 11290–11295 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Takano, A., Endo, T. & Yoshihisa, T. tRNA actively shuttles between the nucleus and cytosol in yeast. Science 309, 140–142 (2005).

    CAS  PubMed  Google Scholar 

  12. Ohira, T. & Suzuki, T. Retrograde nuclear import of tRNA precursors is required for modified base biogenesis in yeast. Proc. Natl. Acad. Sci. USA 108, 10502–10507 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Noma, A., Kirino, Y., Ikeuchi, Y. & Suzuki, T. Biosynthesis of wybutosine, a hyper-modified nucleoside in eukaryotic phenylalanine tRNA. EMBO J. 25, 2142–2154 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. O'Connor, J.P. & Peebles, C.L. In vivo pre-tRNA processing in Saccharomyces cerevisiae. Mol. Cell. Biol. 11, 425–439 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee, Y. et al. Nuclear pre-tRNA terminal structure and RNase P recognition. RNA 3, 175–185 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hiley, S.L., Babak, T. & Hughes, T.R. Global analysis of yeast RNA processing identifies new targets of RNase III and uncovers a link between tRNA 5′ end processing and tRNA splicing. Nucleic Acids Res. 33, 3048–3056 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kufel, J. & Tollervey, D. 3′-processing of yeast tRNATrp precedes 5′-processing. RNA 9, 202–208 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kramer, E.B. & Hopper, A.K. Retrograde transfer RNA nuclear import provides a new level of tRNA quality control in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 110, 21042–21047 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kadaba, S. et al. Nuclear surveillance and degradation of hypomodified initiator tRNAMet in S. cerevisiae. Genes Dev. 18, 1227–1240 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Copela, L.A., Fernandez, C.F., Sherrer, R.L. & Wolin, S.L. Competition between the Rex1 exonuclease and the La protein affects both Trf4p-mediated RNA quality control and pre-tRNA maturation. RNA 14, 1214–1227 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Alexandrov, A. et al. Rapid tRNA decay can result from lack of nonessential modifications. Mol. Cell 21, 87–96 (2006).

    CAS  PubMed  Google Scholar 

  22. Dewe, J.M., Whipple, J.M., Chernyakov, I., Jaramillo, L.N. & Phizicky, E.M. The yeast rapid tRNA decay pathway competes with elongation factor 1A for substrate tRNAs and acts on tRNAs lacking one or more of several modifications. RNA 18, 1886–1896 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Whipple, J.M., Lane, E.A., Chernyakov, I., D'Silva, S. & Phizicky, E.M. The yeast rapid tRNA decay pathway primarily monitors the structural integrity of the acceptor and T-stems of mature tRNA. Genes Dev. 25, 1173–1184 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Guy, M.P. et al. Identification of the determinants of tRNA function and susceptibility to rapid tRNA decay by high-throughput in vivo analysis. Genes Dev. 28, 1721–1732 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Wilusz, J.E., Whipple, J.M., Phizicky, E.M. & Sharp, P.A. tRNAs marked with CCACCA are targeted for degradation. Science 334, 817–821 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. De Robertis, E.M. & Olson, M.V. Transcription and processing of cloned yeast tyrosine tRNA genes microinjected into frog oocytes. Nature 278, 137–143 (1979).

    CAS  PubMed  Google Scholar 

  27. Miyauchi, K., Ohara, T. & Suzuki, T. Automated parallel isolation of multiple species of non-coding RNAs by the reciprocal circulating chromatography method. Nucleic Acids Res. 35, e24 (2007).

    PubMed  PubMed Central  Google Scholar 

  28. Suzuki, T., Ikeuchi, Y., Noma, A., Suzuki, T. & Sakaguchi, Y. Mass spectrometric identification and characterization of RNA-modifying enzymes. Methods Enzymol. 425, 211–229 (2007).

    CAS  PubMed  Google Scholar 

  29. Miyauchi, K., Kimura, S. & Suzuki, T. A cyclic form of N6-threonylcarbamoyladenosine as a widely distributed tRNA hypermodification. Nat. Chem. Biol. 9, 105–111 (2013).

    CAS  PubMed  Google Scholar 

  30. Garber, R.L. & Gage, L.P. Transcription of a cloned Bombyx mori tRNA2Ala gene: nucleotide sequence of the tRNA precursor and its processing in vitro. Cell 18, 817–828 (1979).

    CAS  PubMed  Google Scholar 

  31. Harada, F., Matsubara, M. & Kato, N. Stable tRNA precursors in HeLa cells. Nucleic Acids Res. 12, 9263–9269 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Willis, I. et al. A single base change in the intron of a serine tRNA affects the rate of RNase P cleavage in vitro and suppressor activity in vivo in Saccharomyces cerevisiae. J. Biol. Chem. 261, 5878–5885 (1986).

    CAS  PubMed  Google Scholar 

  33. Yukawa, Y. et al. A common sequence motif involved in selection of transcription start sites of Arabidopsis and budding yeast tRNA genes. Genomics 97, 166–172 (2011).

    CAS  PubMed  Google Scholar 

  34. Koski, R.A. & Clarkson, S.G. Synthesis and maturation of Xenopus laevis methionine tRNA gene transcripts in homologous cell-free extracts. J. Biol. Chem. 257, 4514–4521 (1982).

    CAS  PubMed  Google Scholar 

  35. Ohira, T. et al. Decoding mechanism of nonuniversal genetic codes in Loligo bleekeri mitochondria. J. Biol. Chem. 288, 7645–7652 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Mouaikel, J., Verheggen, C., Bertrand, E., Tazi, J. & Bordonné, R. Hypermethylation of the cap structure of both yeast snRNAs and snoRNAs requires a conserved methyltransferase that is localized to the nucleolus. Mol. Cell 9, 891–901 (2002).

    CAS  PubMed  Google Scholar 

  37. Thuillier, V., Brun, I., Sentenac, A. & Werner, M. Mutations in the α-amanitin conserved domain of the largest subunit of yeast RNA polymerase III affect pausing, RNA cleavage and transcriptional transitions. EMBO J. 15, 618–629 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Itoh, N., Mizumoto, K. & Kaziro, Y. Messenger RNA guanylyltransferase from Saccharomyces cerevisiae. I. Purification and subunit structure. J. Biol. Chem. 259, 13923–13929 (1984).

    CAS  PubMed  Google Scholar 

  39. Boon, K.L. & Kos, M. Deletion of Swm2p selectively impairs trimethylation of snRNAs by trimethylguanosine synthase (Tgs1p). FEBS Lett. 584, 3299–3304 (2010).

    CAS  PubMed  Google Scholar 

  40. Murguía, J.R., Bellés, J.M. & Serrano, R. The yeast HAL2 nucleotidase is an in vivo target of salt toxicity. J. Biol. Chem. 271, 29029–29033 (1996).

    PubMed  Google Scholar 

  41. Parker, R. RNA degradation in Saccharomyces cerevisae. Genetics 191, 671–702 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Stevens, A. Purification and characterization of a Saccharomyces cerevisiae exoribonuclease which yields 5′-mononucleotides by a 5′ leads to 3′ mode of hydrolysis. J. Biol. Chem. 255, 3080–3085 (1980).

    CAS  PubMed  Google Scholar 

  43. Stevens, A. & Poole, T.L. 5′-exonuclease-2 of Saccharomyces cerevisiae. Purification and features of ribonuclease activity with comparison to 5′-exonuclease-1. J. Biol. Chem. 270, 16063–16069 (1995).

    CAS  PubMed  Google Scholar 

  44. Furuichi, Y. & Shatkin, A.J. Viral and cellular mRNA capping: past and prospects. Adv. Virus Res. 55, 135–184 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Matera, A.G., Terns, R.M. & Terns, M.P. Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs. Nat. Rev. Mol. Cell Biol. 8, 209–220 (2007).

    CAS  PubMed  Google Scholar 

  46. Ghosh, A. & Lima, C.D. Enzymology of RNA cap synthesis. Wiley Interdiscip. Rev. RNA 1, 152–172 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Forrest, A.R. et al. A promoter-level mammalian expression atlas. Nature 507, 462–470 (2014).

    CAS  PubMed  Google Scholar 

  48. Abdelhamid, R.F. et al. Multiplicity of 5′ cap structures present on short RNAs. PLoS One 9, e102895 (2014).

    PubMed  PubMed Central  Google Scholar 

  49. Cook, A.G., Fukuhara, N., Jinek, M. & Conti, E. Structures of the tRNA export factor in the nuclear and cytosolic states. Nature 461, 60–65 (2009).

    CAS  PubMed  Google Scholar 

  50. Okada, C. et al. A high-resolution structure of the pre-microRNA nuclear export machinery. Science 326, 1275–1279 (2009).

    CAS  PubMed  Google Scholar 

  51. Wach, A., Brachat, A., Pöhlmann, R. & Philippsen, P. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10, 1793–1808 (1994).

    CAS  PubMed  Google Scholar 

  52. Yamagishi, M., Mizumoto, K. & Ishihama, A. Isolation of temperature-sensitive mutants for mRNA capping enzyme in Saccharomyces cerevisiae. Mol. Gen. Genet. 249, 147–154 (1995).

    CAS  PubMed  Google Scholar 

  53. Sakaguchi, Y., Miyauchi, K., Kang, B.I. & Suzuki, T. Nucleoside analysis by hydrophilic interaction liquid chromatography coupled with mass spectrometry. Methods Enzymol. 560, 19–28 (2015).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Y. Sakaguchi, K. Miyauchi, T. Suzuki and other members of T.S.'s laboratory for technical support and discussion. We also thank Y. Ohya (University of Tokyo), T. Yoshihisa (University of Hyogo) and M. Werner (Institute of Biology and Technology–Saclay) for providing materials. This work was supported by Grants-in-Aid for Young Scientists (B) (T.O.) and by Grants-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Science, Sports, and Culture of Japan (T.S.).

Author information

Authors and Affiliations

Authors

Contributions

T.O. and T.S. designed and performed the experiments and wrote the manuscript. T.S. supervised all the work.

Corresponding author

Correspondence to Tsutomu Suzuki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–4 and Supplementary Figures 1–13. (PDF 3165 kb)

Supplementary Data Set 1

RLE values of CAGE analysis in tRNA genes. (XLSX 210 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohira, T., Suzuki, T. Precursors of tRNAs are stabilized by methylguanosine cap structures. Nat Chem Biol 12, 648–655 (2016). https://doi.org/10.1038/nchembio.2117

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2117

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing