Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sensitivity and engineered resistance of myeloid leukemia cells to BRD9 inhibition

Abstract

Here we show that acute myeloid leukemia (AML) cells require the BRD9 subunit of the SWI−SNF chromatin-remodeling complex to sustain MYC transcription, rapid cell proliferation and a block in differentiation. Based on these observations, we derived small-molecule inhibitors of the BRD9 bromodomain that selectively suppress the proliferation of mouse and human AML cell lines. To establish these effects as on-target, we engineered a bromodomain-swap allele of BRD9 that retains functionality despite a radically altered bromodomain pocket. Expression of this allele in AML cells confers resistance to the antiproliferative effects of our compound series, thus establishing BRD9 as the relevant cellular target. Furthermore, we used an analogous domain-swap strategy to generate an inhibitor-resistant allele of EZH2. To our knowledge, our study provides the first evidence for a role of BRD9 in cancer and reveals a simple genetic strategy for constructing resistance alleles to demonstrate on-target activity of chemical probes in cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: BRD9 is a subunit of SWI–SNF complexes in acute myeloid leukemia cells.
Figure 2: Brd9 supports acute myeloid leukemia growth by sustaining Myc expression and an undifferentiated cell state.
Figure 3: A chemical series that inhibits the BRD9 bromodomain.
Figure 4: A bromodomain-swap allele validates on-target activity of BRD9 inhibitors.
Figure 5: Chemical Brd9 inhibition mimics the transcriptional effects of Brd9 knockdown.
Figure 6: A SET domain-swap allele validates on-target activity of the EZH2 inhibitor GSK126.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Protein Data Bank

Referenced accessions

Gene Expression Omnibus

NCBI Reference Sequence

References

  1. Schenone, M., Dančík, V., Wagner, B.K. & Clemons, P.A. Target identification and mechanism of action in chemical biology and drug discovery. Nat. Chem. Biol. 9, 232–240 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Blagg, J. & Workman, P. Chemical biology approaches to target validation in cancer. Curr. Opin. Pharmacol. 17, 87–100 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Arrowsmith, C.H. et al. The promise and peril of chemical probes. Nat. Chem. Biol. 11, 536–541 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Titov, D.V. & Liu, J.O. Identification and validation of protein targets of bioactive small molecules. Bioorg. Med. Chem. 20, 1902–1909 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Balzano, D., Santaguida, S., Musacchio, A. & Villa, F. A general framework for inhibitor resistance in protein kinases. Chem. Biol. 18, 966–975 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Filippakopoulos, P. & Knapp, S. The bromodomain interaction module. FEBS Lett. 586, 2692–2704 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Brand, M. et al. Small molecule inhibitors of bromodomain-acetyl-lysine interactions. ACS Chem. Biol. 10, 22–39 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Filippakopoulos, P. et al. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell 149, 214–231 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zeng, L. et al. Selective small molecules blocking HIV-1 Tat and coactivator PCAF association. J. Am. Chem. Soc. 127, 2376–2377 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Filippakopoulos, P. et al. Selective inhibition of BET bromodomains. Nature 468, 1067–1073 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nicodeme, E. et al. Suppression of inflammation by a synthetic histone mimic. Nature 468, 1119–1123 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Suzuki, A. et al. Aberrant transcriptional regulations in cancers: genome, transcriptome and epigenome analysis of lung adenocarcinoma cell lines. Nucleic Acids Res. 42, 13557–13572 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hay, D.A. et al. Discovery and optimization of small-molecule ligands for the CBP/p300 bromodomains. J. Am. Chem. Soc. 136, 9308–9319 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen, P. et al. Discovery and characterization of GSK2801, a selective chemical probe for the bromodomains BAZ2A and BAZ2B. J. Med. Chem. 59, 1410–1424 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Bennett, J. et al. Discovery of a chemical tool inhibitor targeting the bromodomains of TRIM24 and BRPF. J. Med. Chem. 59, 1642–1647 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Shi, J. et al. Role of SWI–SNF in acute leukemia maintenance and enhancer-mediated Myc regulation. Genes Dev. 27, 2648–2662 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Buscarlet, M. et al. Essential role of BRG, the ATPase subunit of BAF chromatin remodeling complexes, in leukemia maintenance. Blood 123, 1720–1728 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hohmann, A.F. & Vakoc, C.R. A rationale to target the SWI–SNF complex for cancer therapy. Trends Genet. 30, 356–363 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Oike, T. et al. A synthetic lethality-based strategy to treat cancers harboring a genetic deficiency in the chromatin remodeling factor BRG1. Cancer Res. 73, 5508–5518 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Cruickshank, V.A. et al. SWI–SNF subunits SMARCA4, SMARCD2 and DPF2 collaborate in MLL-rearranged leukaemia maintenance. PLoS One 10, e0142806 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wu, J.I., Lessard, J. & Crabtree, G.R. Understanding the words of chromatin regulation. Cell 136, 200–206 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vangamudi, B. et al. The SMARCA2/4 ATPase domain surpasses the bromodomain as a drug target in SWI–SNF-mutant cancers: insights from cDNA rescue and PFI-3 inhibitor studies. Cancer Res. 75, 3865–3878 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kadoch, C. et al. Proteomic and bioinformatic analysis of mammalian SWI–SNF complexes identifies extensive roles in human malignancy. Nat. Genet. 45, 592–601 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Middeljans, E. et al. SS18 together with animal-specific factors defines human BAF-type SWI–SNF complexes. PLoS One 7, e33834 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zuber, J. et al. Toolkit for evaluating genes required for proliferation and survival using tetracycline-regulated RNAi. Nat. Biotechnol. 29, 79–83 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Dhalluin, C. et al. Structure and ligand of a histone acetyltransferase bromodomain. Nature 399, 491–496 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Zuber, J. et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 478, 524–528 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Martin, L.J. et al. Structure-based design of an in vivo active selective BRD9 inhibitor. J. Med. Chem. 59, 4462–4475 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Machleidt, T. et al. NanoBRET—a novel BRET platform for the analysis of protein-protein interactions. ACS Chem. Biol. 10, 1797–1804 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Clark, P.G. et al. LP99: discovery and synthesis of the first selective BRD7/9 bromodomain inhibitor. Angew. Chem. Int. Edn Engl. 54, 6217–6221 (2015).

    Article  CAS  Google Scholar 

  32. Theodoulou, N.H. et al. Discovery of I-BRD9, a selective cell active chemical probe for bromodomain containing protein 9 inhibition. J. Med. Chem. 59, 1425–1439 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. McCabe, M.T. & Creasy, C.L. EZH2 as a potential target in cancer therapy. Epigenomics 6, 341–351 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Margueron, R. & Reinberg, D. The Polycomb complex PRC2 and its mark in life. Nature 469, 343–349 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. McCabe, M.T. et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 492, 108–112 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Neff, T. et al. Polycomb repressive complex 2 is required for MLL-AF9 leukemia. Proc. Natl. Acad. Sci. USA 109, 5028–5033 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kim, W. et al. Targeted disruption of the EZH2-EED complex inhibits EZH2-dependent cancer. Nat. Chem. Biol. 9, 643–650 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Winter, G.E. et al. DRUG DEVELOPMENT. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science 348, 1376–1381 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lu, J. et al. Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4. Chem. Biol. 22, 755–763 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zengerle, M., Chan, K.H. & Ciulli, A. Selective small molecule induced degradation of the BET bromodomain protein BRD4. ACS Chem. Biol. 10, 1770–1777 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mullard, A. Reliability of 'new drug target' claims called into question. Nat. Rev. Drug Discov. 10, 643–644 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Ross, P.L. et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics 3, 1154–1169 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Gilar, M., Olivova, P., Daly, A.E. & Gebler, J.C. Two-dimensional separation of peptides using RP-RP-HPLC system with different pH in first and second separation dimensions. J. Sep. Sci. 28, 1694–1703 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Wang, Y. et al. Reversed-phase chromatography with multiple fraction concatenation strategy for proteome profiling of human MCF10A cells. Proteomics 11, 2019–2026 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Perkins, D.N., Pappin, D.J., Creasy, D.M. & Cottrell, J.S. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–3567 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Steger, D.J. et al. DOT1L/KMT4 recruitment and H3K79 methylation are ubiquitously coupled with gene transcription in mammalian cells. Mol. Cell. Biol. 28, 2825–2839 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fellmann, C. et al. An optimized microRNA backbone for effective single-copy RNAi. Cell Rep. 5, 1704–1713 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Armour, C.D. et al. Digital transcriptome profiling using selective hexamer priming for cDNA synthesis. Nat. Methods 6, 647–649 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Shi, J. et al. Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains. Nat. Biotechnol. 33, 661–667 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Vonrhein, C. et al. Data processing and analysis with the autoPROC toolbox. Acta Crystallogr. D Biol. Crystallogr. 67, 293–302 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  52. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen, V.B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Bhagwat for critical reading of the manuscript and members of the Vakoc laboratory for discussion of the presented findings. The phylogenetic tree of human bromodomains was provided by S. Knapp. This work was supported by Cold Spring Harbor Laboratory US National Cancer Institute (NCI) Cancer Center Support grant CA455087 for developmental funds and shared resource support. Additional funding was provided by the Alex's Lemonade Stand Foundation, the V Foundation, Pershing Square Sohn Cancer Research Alliance and by Boehringer Ingelheim. A.F.H. is supported by a Boehringer Ingelheim Fonds PhD Fellowship. J.-S.R. is supported by the Martin Sass Foundation and the Lauri Strauss Leukemia Foundation. C.R.V. is supported by a Burroughs-Wellcome Fund Career Award and National Institutes of Health grant NCI RO1 CA174793.

Author information

Authors and Affiliations

Authors

Contributions

A.F.H., L.J.M., M.K., C.R.V. designed experiments and analyzed results; A.F.H. and J.L.M. performed genetic characterization of BRD9, cellular evaluation of BRD9 inhibitors and domain-swap studies; J.-S.R. performed ChIP-seq; J.S. performed IP-MS; L.J.M., S.S., G.B., T.Ge., T. Go., D.T. and M.K. derived BRD9 inhibitors, carried out in vitro characterization and human cell line sensitivity profiling; Y.S. prepared and sequenced shRen and shBrd9 RNA-seq libraries; L.J.M., D.M., M.P., M.K. and C.R.V. supervised the research; A.F.H., L.J.M. and C.R.V. wrote the manuscript.

Corresponding author

Correspondence to Christopher R Vakoc.

Ethics declarations

Competing interests

This study was funded in part via a sponsored research agreement with Boehringer Ingelheim.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–6 and Supplementary Figures 1–15. (PDF 9599 kb)

Supplementary Data 1

Custom gene sets used in GSEA. (XLSX 38 kb)

Supplementary Note 1

Diagram summarizing the small-molecule screening efforts. (PDF 73 kb)

Supplementary Note 2

Synthetic procedures. (PDF 531 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hohmann, A., Martin, L., Minder, J. et al. Sensitivity and engineered resistance of myeloid leukemia cells to BRD9 inhibition. Nat Chem Biol 12, 672–679 (2016). https://doi.org/10.1038/nchembio.2115

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2115

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer