Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cooperation of local motions in the Hsp90 molecular chaperone ATPase mechanism

Abstract

The Hsp90 chaperone is a central node of protein homeostasis, activating many diverse client proteins. Hsp90 functions as a molecular clamp that closes and opens in response to the binding and hydrolysis of ATP. Crystallographic studies have defined distinct conformational states of the mechanistic core, implying structural changes that have not yet been observed in solution. Here we engineered one-nanometer fluorescence probes based on photoinduced electron transfer into the yeast Hsp90 to observe these motions. We found that the ATPase activity of the chaperone was reflected in the kinetics of specific structural rearrangements at remote positions that acted cooperatively. Nanosecond single-molecule fluorescence fluctuation analysis uncovered that critical structural elements that undergo rearrangement were mobile on a sub-millisecond time scale. We identified a two-step mechanism for lid closure over the nucleotide-binding pocket. The activating co-chaperone Aha1 mobilized the lid of apo Hsp90, suggesting an early role in the catalytic cycle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Observation of conformational motions in Hsp90 by PET fluorescence quenching.
Figure 2: Modulation of conformational motions by mutagenesis.
Figure 3: Influence of Aha1 on kinetics of local motions.
Figure 4: Equilibrium dynamics of lid and N-terminal β-strand probed by PET-FCS.
Figure 5: Possible origins of multi-exponential kinetics of Hsp90 conformational change.
Figure 6: Integration of results into the chaperone catalytic cycle.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Taipale, M., Jarosz, D.F. & Lindquist, S. HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat. Rev. Mol. Cell Biol. 11, 515–528 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Saibil, H. Chaperone machines for protein folding, unfolding and disaggregation. Nat. Rev. Mol. Cell Biol. 14, 630–642 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nagy, P.D., Wang, R.Y., Pogany, J., Hafren, A. & Makinen, K. Emerging picture of host chaperone and cyclophilin roles in RNA virus replication. Virology 411, 374–382 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Whitesell, L. & Lindquist, S.L. HSP90 and the chaperoning of cancer. Nat. Rev. Cancer 5, 761–772 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Pearl, L.H., Prodromou, C. & Workman, P. The Hsp90 molecular chaperone: an open and shut case for treatment. Biochem. J. 410, 439–453 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Trepel, J., Mollapour, M., Giaccone, G. & Neckers, L. Targeting the dynamic HSP90 complex in cancer. Nat. Rev. Cancer 10, 537–549 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Prodromou, C. et al. Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 90, 65–75 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Jhaveri, K. et al. Heat shock protein 90 inhibitors in the treatment of cancer: current status and future directions. Expert Opin. Investig. Drugs 23, 611–628 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Neckers, L. & Workman, P. Hsp90 molecular chaperone inhibitors: are we there yet? Clin. Cancer Res. 18, 64–76 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cullinan, S.B. & Whitesell, L. Heat shock protein 90: a unique chemotherapeutic target. Semin. Oncol. 33, 457–465 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Meyer, P. et al. Structural and functional analysis of the middle segment of hsp90: implications for ATP hydrolysis and client protein and cochaperone interactions. Mol. Cell 11, 647–658 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Vaughan, C.K. et al. Structure of an Hsp90-Cdc37-Cdk4 complex. Mol. Cell 23, 697–707 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Richter, K., Muschler, P., Hainzl, O. & Buchner, J. Coordinated ATP hydrolysis by the Hsp90 dimer. J. Biol. Chem. 276, 33689–33696 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Ali, M.M. et al. Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex. Nature 440, 1013–1017 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Panaretou, B. et al. ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo. EMBO J. 17, 4829–4836 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Prodromou, C. et al. The ATPase cycle of Hsp90 drives a molecular 'clamp' via transient dimerization of the N-terminal domains. EMBO J. 19, 4383–4392 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Maloney, A. et al. Gene and protein expression profiling of human ovarian cancer cells treated with the heat shock protein 90 inhibitor 17-allylamino-17-demethoxygeldanamycin. Cancer Res. 67, 3239–3253 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Roe, S.M. et al. Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J. Med. Chem. 42, 260–266 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Shiau, A.K., Harris, S.F., Southworth, D.R. & Agard, D.A. Structural Analysis of E. coli hsp90 reveals dramatic nucleotide-dependent conformational rearrangements. Cell 127, 329–340 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Pearl, L.H. & Prodromou, C. Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu. Rev. Biochem. 75, 271–294 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Prodromou, C. The 'active life' of Hsp90 complexes. Biochim. Biophys. Acta 1823, 614–623 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Graf, C., Stankiewicz, M., Kramer, G. & Mayer, M.P. Spatially and kinetically resolved changes in the conformational dynamics of the Hsp90 chaperone machine. EMBO J. 28, 602–613 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hessling, M., Richter, K. & Buchner, J. Dissection of the ATP-induced conformational cycle of the molecular chaperone Hsp90. Nat. Struct. Mol. Biol. 16, 287–293 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Mickler, M., Hessling, M., Ratzke, C., Buchner, J. & Hugel, T. The large conformational changes of Hsp90 are only weakly coupled to ATP hydrolysis. Nat. Struct. Mol. Biol. 16, 281–286 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Panaretou, B. et al. Activation of the ATPase activity of hsp90 by the stress-regulated cochaperone aha1. Mol. Cell 10, 1307–1318 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Meyer, P. et al. Structural basis for recruitment of the ATPase activator Aha1 to the Hsp90 chaperone machinery. EMBO J. 23, 511–519 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Roe, S.M. et al. The Mechanism of Hsp90 regulation by the protein kinase-specific cochaperone p50(cdc37). Cell 116, 87–98 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Neuweiler, H. & Sauer, M. Using photoinduced charge transfer reactions to study conformational dynamics of biopolymers at the single-molecule level. Curr. Pharm. Biotechnol. 5, 285–298 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Doose, S., Neuweiler, H. & Sauer, M. Fluorescence quenching by photoinduced electron transfer: a reporter for conformational dynamics of macromolecules. ChemPhysChem 10, 1389–1398 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Neuweiler, H., Johnson, C.M. & Fersht, A.R. Direct observation of ultrafast folding and denatured state dynamics in single protein molecules. Proc. Natl. Acad. Sci. USA 106, 18569–18574 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Neuweiler, H., Banachewicz, W. & Fersht, A.R. Kinetics of chain motions within a protein-folding intermediate. Proc. Natl. Acad. Sci. USA 107, 22106–22110 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sauer, M. & Neuweiler, H. PET-FCS: probing rapid structural fluctuations of proteins and nucleic acids by single-molecule fluorescence quenching. Methods Mol. Biol. 1076, 597–615 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Schuler, B. & Hofmann, H. Single-molecule spectroscopy of protein folding dynamics—expanding scope and timescales. Curr. Opin. Struct. Biol. 23, 36–47 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Vaiana, A.C. et al. Fluorescence quenching of dyes by tryptophan: interactions at atomic detail from combination of experiment and computer simulation. J. Am. Chem. Soc. 125, 14564–14572 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Mishra, P. & Bolon, D.N. Designed Hsp90 heterodimers reveal an asymmetric ATPase-driven mechanism in vivo. Mol. Cell 53, 344–350 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Roughley, S.D. & Hubbard, R.E. How well can fragments explore accessed chemical space? A case study from heat shock protein 90. J. Med. Chem. 54, 3989–4005 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Richter, K., Reinstein, J. & Buchner, J. N-terminal residues regulate the catalytic efficiency of the Hsp90 ATPase cycle. J. Biol. Chem. 277, 44905–44910 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Krukenberg, K.A., Förster, F., Rice, L.M., Sali, A. & Agard, D.A. Multiple conformations of E. coli Hsp90 in solution: insights into the conformational dynamics of Hsp90. Structure 16, 755–765 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Southworth, D.R. & Agard, D.A. Species-dependent ensembles of conserved conformational states define the Hsp90 chaperone ATPase cycle. Mol. Cell 32, 631–640 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cochran, A.G., Skelton, N.J. & Starovasnik, M.A. Tryptophan zippers: stable, monomeric beta -hairpins. Proc. Natl. Acad. Sci. USA 98, 5578–5583 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Santiveri, C.M. & Jiménez, M.A. Tryptophan residues: scarce in proteins but strong stabilizers of β-hairpin peptides. Biopolymers 94, 779–790 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Cunningham, C.N., Southworth, D.R., Krukenberg, K.A. & Agard, D.A. The conserved arginine 380 of Hsp90 is not a catalytic residue, but stabilizes the closed conformation required for ATP hydrolysis. Protein Sci. 21, 1162–1171 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. McLaughlin, S.H., Ventouras, L.A., Lobbezoo, B. & Jackson, S.E. Independent ATPase activity of Hsp90 subunits creates a flexible assembly platform. J. Mol. Biol. 344, 813–826 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Wegele, H., Muschler, P., Bunck, M., Reinstein, J. & Buchner, J. Dissection of the contribution of individual domains to the ATPase mechanism of Hsp90. J. Biol. Chem. 278, 39303–39310 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Siligardi, G. et al. Co-chaperone regulation of conformational switching in the Hsp90 ATPase cycle. J. Biol. Chem. 279, 51989–51998 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Prodromou, C. & Pearl, L.H. Structure and functional relationships of Hsp90. Curr. Cancer Drug Targets 3, 301–323 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Koulov, A.V. et al. Biological and structural basis for Aha1 regulation of Hsp90 ATPase activity in maintaining proteostasis in the human disease cystic fibrosis. Mol. Biol. Cell 21, 871–884 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gianni, S., Ivarsson, Y., Jemth, P., Brunori, M. & Travaglini-Allocatelli, C. Identification and characterization of protein folding intermediates. Biophys. Chem. 128, 105–113 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Krukenberg, K.A., Street, T.O., Lavery, L.A. & Agard, D.A. Conformational dynamics of the molecular chaperone Hsp90. Q. Rev. Biophys. 44, 229–255 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lavery, L.A. et al. Structural asymmetry in the closed state of mitochondrial Hsp90 (TRAP1) supports a two-step ATP hydrolysis mechanism. Mol. Cell 53, 330–343 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li, J., Richter, K., Reinstein, J. & Buchner, J. Integration of the accelerator Aha1 in the Hsp90 co-chaperone cycle. Nat. Struct. Mol. Biol. 20, 326–331 (2013).

    Article  PubMed  CAS  Google Scholar 

  52. Retzlaff, M. et al. Asymmetric activation of the hsp90 dimer by its cochaperone aha1. Mol. Cell 37, 344–354 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Ries, J., Schwarze, S., Johnson, C.M. & Neuweiler, H. Microsecond folding and domain motions of a spider silk protein structural switch. J. Am. Chem. Soc. 136, 17136–17144 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Daidone, I., Neuweiler, H., Doose, S., Sauer, M. & Smith, J.C. Hydrogen-bond driven loop-closure kinetics in unfolded polypeptide chains. PLoS Comput. Biol. 6, e1000645 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft (grant NE 1201/3-1 to H.N.) and the Wellcome Trust (Senior Investigator Award 095605/Z11/Z to L.H.P.). A.S. was supported by a grant of the German Excellence Initiative to the Graduate School of Life Sciences (University of Würzburg).

Author information

Authors and Affiliations

Authors

Contributions

A.S. designed experiments, synthesized modified protein material, performed rapid-mixing fluorescence experiments, performed ATPase assays, analyzed data, interpreted results and wrote the paper. G.B. synthesized modified protein material, performed PET-FCS experiments, analyzed data and interpreted results. D.A.H. synthesized modified protein material, performed PET-FCS experiments and analyzed data. J.S. synthesized modified protein material, performed PET-FCS experiments and analyzed data. L.H.P. interpreted results and wrote the paper. C.P. designed experiments, interpreted results and wrote the paper. H.N. conceptually designed the research, designed experiments, analyzed data, interpreted results and wrote the paper.

Corresponding author

Correspondence to Hannes Neuweiler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–4 and Supplementary Figures 1–5. (PDF 835 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schulze, A., Beliu, G., Helmerich, D. et al. Cooperation of local motions in the Hsp90 molecular chaperone ATPase mechanism. Nat Chem Biol 12, 628–635 (2016). https://doi.org/10.1038/nchembio.2111

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2111

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing