Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

NSUN3 methylase initiates 5-formylcytidine biogenesis in human mitochondrial tRNAMet

Abstract

In human mitochondria, the AUA codon encodes methionine via a mitochondrial transfer RNA for methionine (mt-tRNAMet) that contains 5-formylcytidine (f5C) at the first position of the anticodon (position 34). f5C34 is required for deciphering the AUA codon during protein synthesis. Until now, the biogenesis and physiological role of f5C34 were unknown. We demonstrate that biogenesis of f5C34 is initiated by S-adenosylmethionine (AdoMet)-dependent methylation catalyzed by NSUN3, a putative methyltransferase in mitochondria. NSUN3-knockout cells showed strong reduction in mitochondrial protein synthesis and reduced oxygen consumption, leading to deficient mitochondrial activity. We reconstituted formation of 5-methylcytidine (m5C) at position 34 (m5C34) on mt-tRNAMet with recombinant NSUN3 in the presence of AdoMet, demonstrating that NSUN3-mediated m5C34 formation initiates f5C34 biogenesis. We also found two disease-associated point mutations in mt-tRNAMet that impaired m5C34 formation by NSUN3, indicating that a lack of f5C34 has pathological consequences.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Determination of the carbon source for f5C34 in human mt-tRNAMet.
Figure 2: Lack of f5C34 in NSUN3-KO cells.
Figure 3: NSUN3 is required for mitochondrial activity.
Figure 4: In vitro reconstitution of m5C34 and impact of pathogenic mutations on m5C34 formation by NSUN3.

Similar content being viewed by others

Accession codes

Accessions

NCBI Reference Sequence

References

  1. Machnicka, M.A. et al. MODOMICS: a database of RNA modification pathways—2013 update. Nucleic Acids Res. 41, D262–D267 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Bjork, G. in tRNA: Structure, Biosynthesis, and Function (eds. Soll, D. & RajBhandary, U.L.) 165–205 (American Society for Microbiology, 1995).

  3. Suzuki, T. in Fine-Tuning of RNA Functions by Modification and Editing vol. 12 (ed. Grosjean, H.) 23–69 (Springer, 2005).

  4. Wallace, D.C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet. 39, 359–407 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Suzuki, T., Nagao, A. & Suzuki, T. Human mitochondrial tRNAs: biogenesis, function, structural aspects, and diseases. Annu. Rev. Genet. 45, 299–329 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Hällberg, B.M. & Larsson, N.G. Making proteins in the powerhouse. Cell Metab. 20, 226–240 (2014).

    Article  PubMed  CAS  Google Scholar 

  7. Suzuki, T. & Suzuki, T. A complete landscape of post-transcriptional modifications in mammalian mitochondrial tRNAs. Nucleic Acids Res. 42, 7346–7357 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Suzuki, T., Suzuki, T., Wada, T., Saigo, K. & Watanabe, K. Taurine as a constituent of mitochondrial tRNAs: new insights into the functions of taurine and human mitochondrial diseases. EMBO J. 21, 6581–6589 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kirino, Y. et al. Codon-specific translational defect caused by a wobble modification deficiency in mutant tRNA from a human mitochondrial disease. Proc. Natl. Acad. Sci. USA 101, 15070–15075 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kurata, S. et al. Modified uridines with C5-methylene substituents at the first position of the tRNA anticodon stabilize U•G wobble pairing during decoding. J. Biol. Chem. 283, 18801–18811 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Moriya, J. et al. A novel modified nucleoside found at the first position of the anticodon of methionine tRNA from bovine liver mitochondria. Biochemistry 33, 2234–2239 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Takemoto, C. et al. Unconventional decoding of the AUA codon as methionine by mitochondrial tRNAMet with the anticodon f5CAU as revealed with a mitochondrial in vitro translation system. Nucleic Acids Res. 37, 1616–1627 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cantara, W.A., Murphy, F.V. IV, Demirci, H. & Agris, P.F. Expanded use of sense codons is regulated by modified cytidines in tRNA. Proc. Natl. Acad. Sci. USA 110, 10964–10969 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Suzuki, T., Nagao, A. & Suzuki, T. Human mitochondrial diseases caused by lack of taurine modification in mitochondrial tRNAs. Wiley Interdiscip. Rev. RNA 2, 376–386 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Yasukawa, T., Suzuki, T., Ueda, T., Ohta, S. & Watanabe, K. Modification defect at anticodon wobble nucleotide of mitochondrial tRNAsLeu(UUR) with pathogenic mutations of mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes. J. Biol. Chem. 275, 4251–4257 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Yasukawa, T. et al. Defect in modification at the anticodon wobble nucleotide of mitochondrial tRNALys with the MERRF encephalomyopathy pathogenic mutation. FEBS Lett. 467, 175–178 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Kirino, Y., Goto, Y., Campos, Y., Arenas, J. & Suzuki, T. Specific correlation between the wobble modification deficiency in mutant tRNAs and the clinical features of a human mitochondrial disease. Proc. Natl. Acad. Sci. USA 102, 7127–7132 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yasukawa, T. et al. Wobble modification deficiency in mutant tRNAs in patients with mitochondrial diseases. FEBS Lett. 579, 2948–2952 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Umeda, N. et al. Mitochondria-specific RNA-modifying enzymes responsible for the biosynthesis of the wobble base in mitochondrial tRNAs. Implications for the molecular pathogenesis of human mitochondrial diseases. J. Biol. Chem. 280, 1613–1624 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Takeuchi, N. et al. Mammalian mitochondrial methionyl-tRNA transformylase from bovine liver. Purification, characterization, and gene structure. J. Biol. Chem. 273, 15085–15090 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Momb, J. & Appling, D.R. Mitochondrial one-carbon metabolism and neural tube defects. Birth Defects Res. A Clin. Mol. Teratol. 100, 576–583 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Wu, H. & Zhang, Y. Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell 156, 45–68 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Miyauchi, K., Ohara, T. & Suzuki, T. Automated parallel isolation of multiple species of non-coding RNAs by the reciprocal circulating chromatography method. Nucleic Acids Res. 35, e24 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Rhee, H.W. et al. Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 339, 1328–1331 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Robinson, B.H., Petrova-Benedict, R., Buncic, J.R. & Wallace, D.C. Nonviability of cells with oxidative defects in galactose medium: a screening test for affected patient fibroblasts. Biochem. Med. Metab. Biol. 48, 122–126 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Lott, M.T. et al. mtDNA variation and analysis using MITOMAP and MITOMASTER. Curr. Protoc. Bioinformatics 1, 1.23.1–1.23.26 (2013).

    Google Scholar 

  27. Yue, Y., Liu, J. & He, C. RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation. Genes Dev. 29, 1343–1355 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. He, Y.F. et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333, 1303–1307 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ito, S. et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333, 1300–1303 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Païs de Barros, J.P. et al. 2′-O-methyl-5-formylcytidine (f5Cm), a new modified nucleotide at the 'wobble' of two cytoplasmic tRNAs Leu (NAA) from bovine liver. Nucleic Acids Res. 24, 1489–1496 (1996).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Huber, S.M. et al. Formation and abundance of 5-hydroxymethylcytosine in RNA. ChemBioChem 16, 752–755 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Anderson, S. et al. Sequence and organization of the human mitochondrial genome. Nature 290, 457–465 (1981).

    Article  CAS  PubMed  Google Scholar 

  33. Rooijers, K., Loayza-Puch, F., Nijtmans, L.G. & Agami, R. Ribosome profiling reveals features of normal and disease-associated mitochondrial translation. Nat. Commun. 4, 2886 (2013).

    Article  PubMed  CAS  Google Scholar 

  34. Spencer, A.C., Heck, A., Takeuchi, N., Watanabe, K. & Spremulli, L.L. Characterization of the human mitochondrial methionyl-tRNA synthetase. Biochemistry 43, 9743–9754 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Chi, L. & Delgado-Olguín, P. Expression of NOL1/NOP2/Sun domain (Nsun) RNA methyltransferase family genes in early mouse embryogenesis. Gene Expr. Patterns 13, 319–327 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Sharma, S., Yang, J., Watzinger, P., Kötter, P. & Entian, K.D. Yeast Nop2 and Rcm1 methylate C2870 and C2278 of the 25S rRNA, respectively. Nucleic Acids Res. 41, 9062–9076 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Brzezicha, B. et al. Identification of human tRNA:m5C methyltransferase catalysing intron-dependent m5C formation in the first position of the anticodon of the pre-tRNALeu(CAA). Nucleic Acids Res. 34, 6034–6043 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hussain, S. et al. NSun2-mediated cytosine-5 methylation of vault noncoding RNA determines its processing into regulatory small RNAs. Cell Rep. 4, 255–261 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Squires, J.E. et al. Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res. 40, 5023–5033 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Haag, S. et al. NSUN6 is a human RNA methyltransferase that catalyzes formation of m5C72 in specific tRNAs. RNA 21, 1532–1543 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Metodiev, M.D. et al. NSUN4 is a dual function mitochondrial protein required for both methylation of 12S rRNA and coordination of mitoribosomal assembly. PLoS Genet. 10, e1004110 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Spåhr, H., Habermann, B., Gustafsson, C.M., Larsson, N.G. & Hallberg, B.M. Structure of the human MTERF4-NSUN4 protein complex that regulates mitochondrial ribosome biogenesis. Proc. Natl. Acad. Sci. USA 109, 15253–15258 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Harris, T., Marquez, B., Suarez, S. & Schimenti, J. Sperm motility defects and infertility in male mice with a mutation in Nsun7, a member of the Sun domain-containing family of putative RNA methyltransferases. Biol. Reprod. 77, 376–382 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Takemoto, C., Ueda, T., Miura, K. & Watanabe, K. Nucleotide sequences of animal mitochondrial tRNAsMet possibly recognizing both AUG and AUA codons. Nucleic Acids Symp. Ser. 42, 77–78 (1999).

    Article  CAS  Google Scholar 

  45. Watanabe, Y. et al. Primary and higher order structures of nematode (Ascaris suum) mitochondrial tRNAs lacking either the T or D stem. J. Biol. Chem. 269, 22902–22906 (1994).

    CAS  PubMed  Google Scholar 

  46. Lu, Z. et al. The tRNAMet 4435A>G mutation in the mitochondrial haplogroup G2a1 is responsible for maternally inherited hypertension in a Chinese pedigree. Eur. J. Hum. Genet. 19, 1181–1186 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Qu, J. et al. The novel A4435G mutation in the mitochondrial tRNAMet may modulate the phenotypic expression of the LHON-associated ND4 G11778A mutation. Invest. Ophthalmol. Vis. Sci. 47, 475–483 (2006).

    Article  PubMed  Google Scholar 

  48. Tang, S. et al. Transition to next generation analysis of the whole mitochondrial genome: a summary of molecular defects. Hum. Mutat. 34, 882–893 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Pyzocha, N.K., Ran, F.A., Hsu, P.D. & Zhang, F. RNA-guided genome editing of mammalian cells. Methods Mol. Biol. 1114, 269–277 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gao, Y., Yang, J., Cancilla, M.T., Meng, F. & McLuckey, S.A. Top-down interrogation of chemically modified oligonucleotides by negative electron transfer and collision induced dissociation. Anal. Chem. 85, 4713–4720 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Kato, K. et al. Structural and functional analyses of DNA-sensing and immune activation by human cGAS. PLoS One 8, e76983 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Reed, S.E., Staley, E.M., Mayginnes, J.P., Pintel, D.J. & Tullis, G.E. Transfection of mammalian cells using linear polyethylenimine is a simple and effective means of producing recombinant adeno-associated virus vectors. J. Virol. Methods 138, 85–98 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Arai, T. et al. Single methylation of 23S rRNA triggers late steps of 50S ribosomal subunit assembly. Proc. Natl. Acad. Sci. USA 112, E4707–E4716 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sampson, J.R. & Uhlenbeck, O.C. Biochemical and physical characterization of an unmodified yeast phenylalanine transfer RNA transcribed in vitro. Proc. Natl. Acad. Sci. USA 85, 1033–1037 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Stiernagle, T. in WormBook (ed. The C. elegans Research Community) doi:10.1895/wormbook.1.101.1 (11 February 2006).

Download references

Acknowledgements

We are grateful to Y. Sakaguchi, K. Miyauchi, T. Ohira, S. Kimura, H. Hojo, H. Lin, T. Chujo, Y. Ikeuchi and other members of Tsutomu Suzuki's laboratory for technical support and insightful discussions. Special thanks to O. Nureki, I. Koyama-Honda, N. Mizushima (University of Tokyo), C. Ushida (Hirosaki University) and Primetech Inc. (Japan) for materials and technical support. This work was supported by Grants-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) and the Japan Society for the Promotion of Science (JSPS) (to Tsutomu Suzuki and Takeo Suzuki).

Author information

Authors and Affiliations

Authors

Contributions

Tsutomu Suzuki and Takeo Suzuki designed this study. S.N., L.K. and H.I. performed experiments. K.A. assisted with biochemical work. All authors discussed the results. Tsutomu Suzuki, Takeo Suzuki. and S.N. wrote the paper. Tsutomu Suzuki supervised the work.

Corresponding author

Correspondence to Tsutomu Suzuki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results and Supplementary Figures 1 – 5 and Supplementary Tables 1 and 2. (PDF 1382 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakano, S., Suzuki, T., Kawarada, L. et al. NSUN3 methylase initiates 5-formylcytidine biogenesis in human mitochondrial tRNAMet. Nat Chem Biol 12, 546–551 (2016). https://doi.org/10.1038/nchembio.2099

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2099

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing