Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A cascading activity-based probe sequentially targets E1–E2–E3 ubiquitin enzymes

Abstract

Post-translational modifications of proteins with ubiquitin (Ub) and ubiquitin-like modifiers (Ubls), orchestrated by a cascade of specialized E1, E2 and E3 enzymes, control a wide range of cellular processes. To monitor catalysis along these complex reaction pathways, we developed a cascading activity-based probe, UbDha. Similarly to the native Ub, upon ATP-dependent activation by the E1, UbDha can travel downstream to the E2 (and subsequently E3) enzymes through sequential trans-thioesterifications. Unlike the native Ub, at each step along the cascade, UbDha has the option to react irreversibly with active site cysteine residues of target enzymes, thus enabling their detection. We show that our cascading probe 'hops' and 'traps' catalytically active Ub-modifying enzymes (but not their substrates) by a mechanism diversifiable to Ubls. Our founder methodology, amenable to structural studies, proteome-wide profiling and monitoring of enzymatic activity in living cells, presents novel and versatile tools to interrogate Ub and Ubl cascades.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanism of the ABP UbDha.
Figure 2: Covalent thioether bond formation of UbDha with conjugating enzymes.
Figure 3: Structural studies of thioether-linked E2–Ub adducts.
Figure 4: Proteome-wide activity profiling of Ub-conjugation machinery.
Figure 5: Activation of UbDha in vivo.
Figure 6: Probing in vivo E1–E2 cascade with UbDha.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Komander, D. & Rape, M. The ubiquitin code. Annu. Rev. Biochem. 81, 203–229 (2012).

    CAS  PubMed  Google Scholar 

  2. Steele-Mortimer, O. Exploitation of the ubiquitin system by invading bacteria. Traffic 12, 162–169 (2011).

    CAS  PubMed  Google Scholar 

  3. Sadaghiani, A.M., Verhelst, S.H. & Bogyo, M. Tagging and detection strategies for activity-based proteomics. Curr. Opin. Chem. Biol. 11, 20–28 (2007).

    CAS  PubMed  Google Scholar 

  4. Cravatt, B.F., Wright, A.T. & Kozarich, J.W. Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. Annu. Rev. Biochem. 77, 383–414 (2008).

    CAS  PubMed  Google Scholar 

  5. Borodovsky, A. et al. A novel active site-directed probe specific for deubiquitylating enzymes reveals proteasome association of USP14. EMBO J. 20, 5187–5196 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Borodovsky, A. et al. Chemistry-based functional proteomics reveals novel members of the deubiquitinating enzyme family. Chem. Biol. 9, 1149–1159 (2002).

    CAS  PubMed  Google Scholar 

  7. Ekkebus, R., Flierman, D., Geurink, P.P. & Ovaa, H. Catching a DUB in the act: novel ubiquitin-based active site directed probes. Curr. Opin. Chem. Biol. 23, 63–70 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kramer, H.B., Nicholson, B., Kessler, B.M. & Altun, M. Detection of ubiquitin-proteasome enzymatic activities in cells: application of activity-based probes to inhibitor development. Biochim. Biophys. Acta 1823, 2029–2037 (2012).

    CAS  PubMed  Google Scholar 

  9. Lu, X. et al. Designed semisynthetic protein inhibitors of Ub/Ubl E1 activating enzymes. J. Am. Chem. Soc. 132, 1748–1749 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Olsen, S.K., Capili, A.D., Lu, X., Tan, D.S. & Lima, C.D. Active site remodelling accompanies thioester bond formation in the SUMO E1. Nature 463, 906–912 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. An, H. & Statsyuk, A.V. Development of activity-based probes for ubiquitin and ubiquitin-like protein signaling pathways. J. Am. Chem. Soc. 135, 16948–16962 (2013).

    CAS  PubMed  Google Scholar 

  12. An, H. & Statsyuk, A.V. Facile synthesis of covalent probes to capture enzymatic intermediates during E1 enzyme catalysis. Chem. Commun. (Camb.) 52, 2477–2480 (2016).

    CAS  Google Scholar 

  13. Wiener, R., Zhang, X., Wang, T. & Wolberger, C. The mechanism of OTUB1-mediated inhibition of ubiquitination. Nature 483, 618–622 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kamadurai, H.B. et al. Insights into ubiquitin transfer cascades from a structure of a UbcH5B approximately ubiquitin-HECT(NEDD4L) complex. Mol. Cell 36, 1095–1102 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Pruneda, J.N. et al. Structure of an E3:E2Ub complex reveals an allosteric mechanism shared among RING/U-box ligases. Mol. Cell 47, 933–942 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Scott, D.C. et al. Structure of a RING E3 trapped in action reveals ligation mechanism for the ubiquitin-like protein NEDD8. Cell 157, 1671–1684 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Plechanovová, A., Jaffray, E.G., Tatham, M.H., Naismith, J.H. & Hay, R.T. Structure of a RING E3 ligase and ubiquitin-loaded E2 primed for catalysis. Nature 489, 115–120 (2012).

    PubMed  PubMed Central  Google Scholar 

  18. Schulman, B.A. & Harper, J.W. Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat. Rev. Mol. Cell Biol. 10, 319–331 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hodgins, R.R., Ellison, K.S. & Ellison, M.J. Expression of a ubiquitin derivative that conjugates to protein irreversibly produces phenotypes consistent with a ubiquitin deficiency. J. Biol. Chem. 267, 8807–8812 (1992).

    CAS  PubMed  Google Scholar 

  20. Pickart, C.M., Kasperek, E.M., Beal, R. & Kim, A. Substrate properties of site-specific mutant ubiquitin protein (G76A) reveal unexpected mechanistic features of ubiquitin-activating enzyme (E1). J. Biol. Chem. 269, 7115–7123 (1994).

    CAS  PubMed  Google Scholar 

  21. Rotin, D. & Kumar, S. Physiological functions of the HECT family of ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 10, 398–409 (2009).

    CAS  PubMed  Google Scholar 

  22. El Oualid, F. et al. Chemical synthesis of ubiquitin, ubiquitin-based probes, and diubiquitin. Angew. Chem. Int. Edn Engl. 49, 10149–10153 (2010).

    CAS  Google Scholar 

  23. Bernardes, G.J., Chalker, J.M., Errey, J.C. & Davis, B.G. Facile conversion of cysteine and alkyl cysteines to dehydroalanine on protein surfaces: versatile and switchable access to functionalized proteins. J. Am. Chem. Soc. 130, 5052–5053 (2008).

    CAS  PubMed  Google Scholar 

  24. Chalker, J.M. et al. Methods for converting cysteine to dehydroalanine. Chem. Sci. (Camb.) 2, 1666–1676 (2011).

    CAS  Google Scholar 

  25. Jin, J., Li, X., Gygi, S.P. & Harper, J.W. Dual E1 activation systems for ubiquitin differentially regulate E2 enzyme charging. Nature 447, 1135–1138 (2007).

    CAS  PubMed  Google Scholar 

  26. Schäfer, A., Kuhn, M. & Schindelin, H. Structure of the ubiquitin-activating enzyme loaded with two ubiquitin molecules. Acta Crystallogr. D Biol. Crystallogr. 70, 1311–1320 (2014).

    PubMed  Google Scholar 

  27. Olsen, S.K. & Lima, C.D. Structure of a ubiquitin E1-E2 complex: insights to E1-E2 thioester transfer. Mol. Cell 49, 884–896 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Andersen, P.L. et al. Distinct regulation of Ubc13 functions by the two ubiquitin-conjugating enzyme variants Mms2 and Uev1A. J. Cell Biol. 170, 745–755 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kee, Y., Lyon, N. & Huibregtse, J.M. The Rsp5 ubiquitin ligase is coupled to and antagonized by the Ubp2 deubiquitinating enzyme. EMBO J. 24, 2414–2424 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ekkebus, R. et al. On terminal alkynes that can react with active-site cysteine nucleophiles in proteases. J. Am. Chem. Soc. 135, 2867–2870 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Walden, H. et al. The structure of the APPBP1-UBA3-NEDD8-ATP complex reveals the basis for selective ubiquitin-like protein activation by an E1. Mol. Cell 12, 1427–1437 (2003).

    CAS  PubMed  Google Scholar 

  32. Pruneda, J.N., Stoll, K.E., Bolton, L.J., Brzovic, P.S. & Klevit, R.E. Ubiquitin in motion: structural studies of the ubiquitin-conjugating enzymeubiquitin conjugate. Biochemistry 50, 1624–1633 (2011).

    CAS  PubMed  Google Scholar 

  33. Page, R.C., Pruneda, J.N., Amick, J., Klevit, R.E. & Misra, S. Structural insights into the conformation and oligomerization of E2ubiquitin conjugates. Biochemistry 51, 4175–4187 (2012).

    CAS  PubMed  Google Scholar 

  34. van Wijk, S.J. & Timmers, H.T. The family of ubiquitin-conjugating enzymes (E2s): deciding between life and death of proteins. FASEB J. 24, 981–993 (2010).

    CAS  PubMed  Google Scholar 

  35. Huang, L. et al. Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2-E3 enzyme cascade. Science 286, 1321–1326 (1999).

    CAS  PubMed  Google Scholar 

  36. Nakada, S. et al. Non-canonical inhibition of DNA damage-dependent ubiquitination by OTUB1. Nature 466, 941–946 (2010).

    CAS  PubMed  Google Scholar 

  37. Yang, Y. et al. Inhibitors of ubiquitin-activating enzyme (E1), a new class of potential cancer therapeutics. Cancer Res. 67, 9472–9481 (2007).

    CAS  PubMed  Google Scholar 

  38. Dantuma, N.P., Groothuis, T.A., Salomons, F.A. & Neefjes, J. A dynamic ubiquitin equilibrium couples proteasomal activity to chromatin remodeling. J. Cell Biol. 173, 19–26 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Pohl, C. & Jentsch, S. Final stages of cytokinesis and midbody ring formation are controlled by BRUCE. Cell 132, 832–845 (2008).

    CAS  PubMed  Google Scholar 

  40. Menon, M.B. et al. Endoplasmic reticulum-associated ubiquitin-conjugating enzyme Ube2j1 is a novel substrate of MK2 (MAPKAP kinase-2) involved in MK2-mediated TNFα production. Biochem. J. 456, 163–172 (2013).

    CAS  PubMed  Google Scholar 

  41. Liu, J. et al. Targeting the ubiquitin pathway for cancer treatment. Biochim. Biophys. Acta 1855, 50–60 (2015).

    CAS  PubMed  Google Scholar 

  42. da Silva, S.R., Paiva, S.L., Lukkarila, J.L. & Gunning, P.T. Exploring a new frontier in cancer treatment: targeting the ubiquitin and ubiquitin-like activating enzymes. J. Med. Chem. 56, 2165–2177 (2013).

    CAS  PubMed  Google Scholar 

  43. Sommer, S., Ritterhoff, T., Melchior, F. & Mootz, H.D. A stable chemical SUMO1-Ubc9 conjugate specifically binds as a thioester mimic to the RanBP2-E3 ligase complex. ChemBioChem 16, 1183–1189 (2015).

    CAS  PubMed  Google Scholar 

  44. Studier, F.W. Protein production by auto-induction in high density shaking cultures. Protein Expr. Purif. 41, 207–234 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Favier, A. & Brutscher, B. Recovering lost magnetization: polarization enhancement in biomolecular NMR. J. Biomol. NMR 49, 9–15 (2011).

    CAS  PubMed  Google Scholar 

  46. Kabsch, W. Xds. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Winn, M.D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Adams, P.D. et al. The Phenix software for automated determination of macromolecular structures. Methods 55, 94–106 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Johnson, J.P., Demmer-Dieckmann, M., Meo, T., Hadam, M.R. & Riethmüller, G. Surface antigens of human melanoma cells defined by monoclonal antibodies. I. Biochemical characterization of two antigens found on cell lines and fresh tumors of diverse tissue origin. Eur. J. Immunol. 11, 825–831 (1981).

    CAS  PubMed  Google Scholar 

  52. van der Kant, R. et al. Late endosomal transport and tethering are coupled processes controlled by RILP and the cholesterol sensor ORP1L. J. Cell Sci. 126, 3462–3474 (2013).

    CAS  PubMed  Google Scholar 

  53. Sugaya, K., Ishihara, Y., Inoue, S. & Tsuji, H. Characterization of ubiquitin-activating enzyme Uba1 in the nucleus by its mammalian temperature-sensitive mutant. PLoS One 9, e96666 (2014).

    PubMed  PubMed Central  Google Scholar 

  54. Roux, K.J., Kim, D.I., Raida, M. & Burke, B. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J. Cell Biol. 196, 801–810 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Cox, J. et al. Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794–1805 (2011).

    CAS  PubMed  Google Scholar 

  56. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of H.O.'s lab for helpful discussion and reagents, J. Brown and S. Armour (Ubiquigent) for providing the E2 scan kit and D. El Atmioui for solid phase peptide synthesis. We acknowledge beamline staff at Diamond I04-1 for expert help. Work was supported by a VICI grant from the Netherlands Organization for Scientific Research (NWO) (724013002) to H.O., a Marie Curie ITN fellowship (290257) to K.W. and EMBO long-term fellowships to I.B. and J.N.P. Work in D.K.'s lab is funded by Medical Research Council (U105192732), the European Research Council (309756), and the Lister Institute for Preventive Medicine. Work in B.A.S.'s lab is funded by ALSAC, HHMI and NIH grant R37GM069530. Work in A.C.O.V.'s lab is funded by the NWO (93511037) and the European Research Council (310913). Work in M.G.'s lab is funded by the German Research Foundation (DFG) CRC969, project C01. J.B. received a stipend from the Graduate School Chemical Biology Ko-RSCB.

Author information

Authors and Affiliations

Authors

Contributions

M.P.C.M. and F.E.O. designed the study. M.P.C.M., K.W. and I.B. carried out all labeling experiments. I.B. and K.W. designed and executed in-cell labeling experiments with assistance from R.M., and I.B. collected and analyzed confocal microscopy data. Mass spectrometry and relevant data analysis were performed by J.-G.C. and A.C.O.V. on samples prepared by K.W. and I.B. J.N.P. and D.K. performed structural and competition studies and analyzed NMR and X-ray data. K.-P.W. and B.A.S. generated the panel of purified HECT and NEDD8 pathway enzymes and helped with data analysis. J.N. helped with data analysis and provided helpful discussions. J.B. and M.G. provided UBA6. M.P.C.M., F.E.O. and H.O. managed the study. M.P.C.M. and I.B. wrote the manuscript with input from other authors.

Corresponding authors

Correspondence to Farid El Oualid or Huib Ovaa.

Ethics declarations

Competing interests

H.O., M.P.C.M. and F.E.O. are entitled to royalties that may result from licensing patent application WO2016/032332 according to IP policies of the Netherlands Cancer Institute. H.O. and F.E.O. declare competing financial interests as cofounders and shareholders of UbiQ Bio BV. D.K. and H.O. are part of the DUB Alliance, which includes Cancer Research Technology and FORMA Therapeutics. D.K. is a consultant for FORMA Therapeutics.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–22 and Supplementary Table 1 (PDF 2341 kb)

Supplementary Note 1

Synthetic procedures (PDF 838 kb)

Supplementary Note 2

E1–E2–E3 labelling assay conditions (PDF 144 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mulder, M., Witting, K., Berlin, I. et al. A cascading activity-based probe sequentially targets E1–E2–E3 ubiquitin enzymes. Nat Chem Biol 12, 523–530 (2016). https://doi.org/10.1038/nchembio.2084

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2084

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing