Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

The Taf14 YEATS domain is a reader of histone crotonylation

Abstract

The discovery of new histone modifications is unfolding at startling rates; however, the identification of effectors capable of interpreting these modifications has lagged behind. Here we report the YEATS domain as an effective reader of histone lysine crotonylation, an epigenetic signature associated with active transcription. We show that the Taf14 YEATS domain engages crotonyllysine via a unique π–π–π-stacking mechanism and that other YEATS domains have crotonyllysine-binding activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural mechanism for the recognition of H3K9cr.
Figure 2: H3K9cr is a selective target of the Taf14 YEATS domain.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Tan, M. et al. Cell 146, 1016–1028 (2011).

    Article  CAS  Google Scholar 

  2. Sabari, B.R. et al. Mol. Cell 58, 203–215 (2015).

    Article  CAS  Google Scholar 

  3. Lin, H., Su, X. & He, B. ACS Chem. Biol. 7, 947–960 (2012).

    Article  CAS  Google Scholar 

  4. Bao, X. et al. eLife 3, e02999 (2014).

    Article  Google Scholar 

  5. Musselman, C.A., Lalonde, M.E., Côté, J. & Kutateladze, T.G. Nat. Struct. Mol. Biol. 19, 1218–1227 (2012).

    Article  CAS  Google Scholar 

  6. Rothbart, S.B. & Strahl, B.D. Biochim. Biophys. Acta 1839, 627–643 (2014).

    Article  CAS  Google Scholar 

  7. Flynn, E.M. et al. Structure 23, 1801–1814 (2015).

    Article  CAS  Google Scholar 

  8. Filippakopoulos, P. et al. Cell 149, 214–231 (2012).

    Article  CAS  Google Scholar 

  9. Schulze, J.M., Wang, A.Y. & Kobor, M.S. Biochem. Cell Biol. 87, 65–75 (2009).

    Article  CAS  Google Scholar 

  10. Li, Y. et al. Cell 159, 558–571 (2014).

    Article  CAS  Google Scholar 

  11. Shanle, E.K. et al. Genes Dev. 29, 1795–1800 (2015).

    Article  CAS  Google Scholar 

  12. Kabani, M., Michot, K., Boschiero, C. & Werner, M. Biochem. Biophys. Res. Commun. 332, 398–403 (2005).

    Article  CAS  Google Scholar 

  13. Shen, X. Methods Enzymol. 377, 401–412 (2004).

    Article  CAS  Google Scholar 

  14. Cairns, B.R., Henry, N.L. & Kornberg, R.D. Mol. Cell. Biol. 16, 3308–3316 (1996).

    Article  CAS  Google Scholar 

  15. John, S. et al. Genes Dev. 14, 1196–1208 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Andrews, F.H., Shanle, E.K., Strahl, B.D. & Kutateladze, T.G. Transcription 7, 14–20 (2016).

    Article  CAS  Google Scholar 

  17. McCoy, A.J. et al. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  18. Adams, P.D. et al. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  Google Scholar 

  19. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  Google Scholar 

  20. Ali, M. et al. Proc. Natl. Acad. Sci. USA 110, 11296–11301 (2013).

    Article  CAS  Google Scholar 

  21. Rothbart, S.B. et al. Nat. Struct. Mol. Biol. 19, 1155–1160 (2012).

    Article  CAS  Google Scholar 

  22. Shanle, E.K. et al. Genes Dev. 29, 1795–1800 (2015).

    Article  CAS  Google Scholar 

  23. Keogh, M.C. et al. Genes Dev. 20, 660–665 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Aponte-Collazo for help with experiments and M. Bedford, K. Chua, D. Stillman, and J. Tyler for kindly providing some original DNA constructs of YEATS and bromodomains, as well as the yeast strains and extracts. This work was supported by NIH grants R01 GM106416 and GM100907 to T.G.K. and GM110058 to B.D.S. and by CPRIT RP160237 to X.S. F.H.A. is supported by the NIH grant T32AA007464, E.K.S. is supported by the NIH grant K12-GM000678, S.A.S. is supported by a UNC Lineberger Cancer Center Postdoctoral Fellowship Award, and A.G. is supported by the CPRIT Research Training grant RP140106.

Author information

Authors and Affiliations

Authors

Contributions

F.H.A., S.A.S., E.K.S., J.B.B., A.G., I.K.T., and K.K. performed experiments and, together with X.S., B.D.S., and T.G.K., analyzed the data. F.H.A., S.A.S., B.D.S., and T.G.K. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Brian D Strahl or Tatiana G Kutateladze.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–7 and Supplementary Tables 1 and 2. (PDF 13029 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrews, F., Shinsky, S., Shanle, E. et al. The Taf14 YEATS domain is a reader of histone crotonylation. Nat Chem Biol 12, 396–398 (2016). https://doi.org/10.1038/nchembio.2065

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2065

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing