Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Optogenetic oligomerization of Rab GTPases regulates intracellular membrane trafficking

Abstract

Intracellular membrane trafficking, which is involved in diverse cellular processes, is dynamic and difficult to study in a spatiotemporal manner. Here we report an optogenetic strategy, termed light-activated reversible inhibition by assembled trap of intracellular membranes (IM-LARIAT), that uses various Rab GTPases combined with blue-light-induced hetero-interaction between cryptochrome 2 and CIB1. In this system, illumination induces a rapid and reversible intracellular membrane aggregation that disrupts the dynamics and functions of the targeted membrane. We applied IM-LARIAT to specifically perturb several Rab-mediated trafficking processes, including receptor transport, protein sorting and secretion, and signaling initiated from endosomes. We finally used this tool to reveal different functions of local Rab5-mediated and Rab11-mediated membrane trafficking in growth cones and soma of young hippocampal neurons. Our results show that IM-LARIAT is a versatile tool that can be used to dissect spatiotemporal functions of intracellular membranes in diverse systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optogenetic control of intracellular membrane trafficking by light-induced aggregation of Rab GTPases.
Figure 2: Optogenetic control of specific functions mediated by Rab5-targeted and Rab11-targeted membrane.
Figure 3: Optogenetic control of specific functions mediated by diverse Rab-targeted membranes.
Figure 4: Rab5-targeted and Rab11-targeted aggregations in GCs of hippocampal neurons differently interfere with protrusion and growth.

Similar content being viewed by others

References

  1. Sadowski, L., Pilecka, I. & Miaczynska, M. Signaling from endosomes: location makes a difference. Exp. Cell Res. 315, 1601–1609 (2009).

    Article  CAS  Google Scholar 

  2. Pálfy, M., Reményi, A. & Korcsmáros, T. Endosomal crosstalk: meeting points for signaling pathways. Trends Cell Biol. 22, 447–456 (2012).

    Article  Google Scholar 

  3. Théry, C., Ostrowski, M. & Segura, E. Membrane vesicles as conveyors of immune responses. Nat. Rev. Immunol. 9, 581–593 (2009).

    Article  Google Scholar 

  4. Goldenring, J.R. A central role for vesicle trafficking in epithelial neoplasia: intracellular highways to carcinogenesis. Nat. Rev. Cancer 13, 813–820 (2013).

    Article  CAS  Google Scholar 

  5. Millecamps, S. & Julien, J.-P. Axonal transport deficits and neurodegenerative diseases. Nat. Rev. Neurosci. 14, 161–176 (2013).

    Article  CAS  Google Scholar 

  6. Zhang, J. et al. Thirty-one flavors of Drosophila rab proteins. Genetics 176, 1307–1322 (2007).

    Article  CAS  Google Scholar 

  7. Gillespie, E.J. et al. Selective inhibitor of endosomal trafficking pathways exploited by multiple toxins and viruses. Proc. Natl. Acad. Sci. USA 110, E4904–E4912. http://dx.doi.org/10.1073/pnas.1302334110 (2013).

    Article  CAS  Google Scholar 

  8. Fili, N., Calleja, V., Woscholski, R., Parker, P.J. & Larijani, B. Compartmental signal modulation: Endosomal phosphatidylinositol 3-phosphate controls endosome morphology and selective cargo sorting. Proc. Natl. Acad. Sci. USA 103, 15473–15478 (2006).

    Article  CAS  Google Scholar 

  9. Kennedy, M.J. et al. Rapid blue-light-mediated induction of protein interactions in living cells. Nat. Methods 7, 973–975 (2010).

    Article  CAS  Google Scholar 

  10. Bugaj, L.J., Choksi, A.T., Mesuda, C.K., Kane, R.S. & Schaffer, D.V. Optogenetic protein clustering and signaling activation in mammalian cells. Nat. Methods 10, 249–252 (2013).

    Article  CAS  Google Scholar 

  11. Konermann, S. et al. Optical control of mammalian endogenous transcription and epigenetic states. Nature 500, 472–476 (2013).

    Article  CAS  Google Scholar 

  12. Lee, S. et al. Reversible protein inactivation by optogenetic trapping in cells. Nat. Methods 11, 633–636 (2014).

    Article  CAS  Google Scholar 

  13. Chang, K.Y. et al. Light-inducible receptor tyrosine kinases that regulate neurotrophin signalling. Nat. Commun. 5, 4057 (2014).

    Article  CAS  Google Scholar 

  14. Kim, N. et al. Spatiotemporal control of fibroblast growth factor receptor signals by blue light. Chem. Biol. 21, 903–912 (2014).

    Article  CAS  Google Scholar 

  15. Kyung, T. et al. Optogenetic control of endogenous Ca(2+) channels in vivo. Nat. Biotechnol. 33, 1092–1096 (2015).

    Article  CAS  Google Scholar 

  16. Chen, D., Gibson, E.S. & Kennedy, M.J. A light-triggered protein secretion system. J. Cell Biol. 201, 631–640 (2013).

    Article  CAS  Google Scholar 

  17. Stenmark, H. Rab GTPases as coordinators of vesicle traffic. Nat. Rev. Mol. Cell Biol. 10, 513–525 (2009).

    Article  CAS  Google Scholar 

  18. Pfeffer, S.R. Rab GTPase regulation of membrane identity. Curr. Opin. Cell Biol. 25, 414–419 (2013).

    Article  CAS  Google Scholar 

  19. Hutagalung, A.H. & Novick, P.J. Role of Rab GTPases in membrane traffic and cell physiology. Physiol. Rev. 91, 119–149 (2011).

    Article  CAS  Google Scholar 

  20. Palamidessi, A. et al. Endocytic trafficking of Rac is required for the spatial restriction of signaling in cell migration. Cell 134, 135–147 (2008).

    Article  CAS  Google Scholar 

  21. Dou, Z. et al. Class IA PI3K p110β subunit promotes autophagy through Rab5 small GTPase in response to growth factor limitation. Mol. Cell 50, 29–42 (2013).

    Article  CAS  Google Scholar 

  22. Rosenfeldt, G., Viana, R.M., Mootz, H.D., von Arnim, A.G. & Batschauer, A. Chemically induced and light-independent cryptochrome photoreceptor activation. Mol. Plant 1, 4–14 (2008).

    Article  CAS  Google Scholar 

  23. Killisch, I. et al. Characterization of early and late endocytic compartments of the transferrin cycle. Transferrin receptor antibody blocks erythroid differentiation by trapping the receptor in the early endosome. J. Cell Sci. 103, 211–232 (1992).

    CAS  PubMed  Google Scholar 

  24. Barbieri, M.A., Fernandez-Pol, S., Hunker, C., Horazdovsky, B.H. & Stahl, P.D. Role of rab5 in EGF receptor-mediated signal transduction. Eur. J. Cell Biol. 83, 305–314 (2004).

    Article  CAS  Google Scholar 

  25. Ceresa, B.P. & Bahr, S.J. rab7 activity affects epidermal growth factor:epidermal growth factor receptor degradation by regulating endocytic trafficking from the late endosome. J. Biol. Chem. 281, 1099–1106 (2006).

    Article  CAS  Google Scholar 

  26. Presley, J.F. et al. ER-to-Golgi transport visualized in living cells. Nature 389, 81–85 (1997).

    Article  CAS  Google Scholar 

  27. Tsuboi, T. & Fukuda, M. Rab3A and Rab27A cooperatively regulate the docking step of dense-core vesicle exocytosis in PC12 cells. J. Cell Sci. 119, 2196–2203 (2006).

    Article  CAS  Google Scholar 

  28. Sann, S., Wang, Z., Brown, H. & Jin, Y. Roles of endosomal trafficking in neurite outgrowth and guidance. Trends Cell Biol. 19, 317–324 (2009).

    Article  CAS  Google Scholar 

  29. Kalil, K., Li, L. & Hutchins, B.I. Signaling mechanisms in cortical axon growth, guidance, and branching. Front. Neuroanat. 5, 62 (2011).

    Article  Google Scholar 

  30. Villarroel-Campos, D., Gastaldi, L., Conde, C., Caceres, A. & Gonzalez-Billault, C. Rab-mediated trafficking role in neurite formation. J. Neurochem. 129, 240–248 (2014).

    Article  CAS  Google Scholar 

  31. Falk, J., Konopacki, F.A., Zivraj, K.H. & Holt, C.E. Rab5 and Rab4 regulate axon elongation in the Xenopus visual system. J. Neurosci. 34, 373–391 (2014).

    Article  CAS  Google Scholar 

  32. Eva, R. et al. Rab11 and its effector Rab coupling protein contribute to the trafficking of beta 1 integrins during axon growth in adult dorsal root ganglion neurons and PC12 cells. J. Neurosci. 30, 11654–11669 (2010).

    Article  CAS  Google Scholar 

  33. Lowery, L.A. & Van Vactor, D. The trip of the tip: understanding the growth cone machinery. Nat. Rev. Mol. Cell Biol. 10, 332–343 (2009).

    Article  CAS  Google Scholar 

  34. Robinson, M.S., Sahlender, D.A. & Foster, S.D. Rapid inactivation of proteins by rapamycin-induced rerouting to mitochondria. Dev. Cell 18, 324–331 (2010).

    Article  CAS  Google Scholar 

  35. van Bergeijk, P., Adrian, M., Hoogenraad, C.C. & Kapitein, L.C. Optogenetic control of organelle transport and positioning. Nature 518, 111–114 (2015).

    Article  CAS  Google Scholar 

  36. Duan, L. et al. Optogenetic control of molecular motors and organelle distributions in cells. Chem. Biol. 22, 671–682 (2015).

    Article  CAS  Google Scholar 

  37. Ramírez, O.A. & Couve, A. The endoplasmic reticulum and protein trafficking in dendrites and axons. Trends Cell Biol. 21, 219–227 (2011).

    Article  Google Scholar 

  38. Heo, W.D. & Meyer, T. Switch-of-function mutants based on morphology classification of Ras superfamily small GTPases. Cell 113, 315–328 (2003).

    Article  CAS  Google Scholar 

  39. Yang, H.W. et al. Cooperative activation of PI3K by Ras and Rho family small GTPases. Mol. Cell 47, 281–290 (2012).

    Article  CAS  Google Scholar 

  40. Gil, J.E. et al. Phosphoinositides differentially regulate protrudin localization through the FYVE domain. J. Biol. Chem. 287, 41268–41276 (2012).

    Article  CAS  Google Scholar 

  41. Matsui, T., Itoh, T. & Fukuda, M. Small GTPase Rab12 regulates constitutive degradation of transferrin receptor. Traffic 12, 1432–1443 (2011).

    Article  CAS  Google Scholar 

  42. Park, B.O., Ahrends, R. & Teruel, M.N. Consecutive positive feedback loops create a bistable switch that controls preadipocyte-to-adipocyte conversion. Cell Rep. 2, 976–990 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Kim, H. Lee and M. Lee for helpful discussions, and D. Woo, H. Jung and S. Kim for technical assistance in neuron culture. This work was supported by the Institute for Basic Science (no. IBS-R001-G1); KAIST Institute for the BioCentury, Republic of Korea; and the Intelligent Synthetic Biology Center of the Global Frontier Project (2011-0031955) funded by the Ministry of Science, ICT and Future Planning, Republic of Korea.

Author information

Authors and Affiliations

Authors

Contributions

M.K.N. and W.D.H. conceived the idea. M.K.N. and C.Y.K. designed and performed the experiments. M.K.N., C.Y.K. and J.M.K. analyzed the data. M.K.N., C.Y.K., J.M.K., B.O.P., S.L., H.P. and W.D.H. discussed the data. M.K.N. and W.D.H. wrote the paper.

Corresponding author

Correspondence to Won Do Heo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results and Supplementary Figures 1–11. (PDF 3556 kb)

Expression of CRY2-conjugated Rab GTPase results in an aberrant vesicle pattern and slow dynamics. (MOV 4186 kb)

Optogenetic control of early and recycling endosomes. (MOV 4970 kb)

Optogenetic control of late endosome trafficking. (MOV 1563 kb)

Optogenetic control of secretory vesicle trafficking. (MOV 4622 kb)

Optogenetic control of ER-Golgi-PM vesicle trafficking. (MOV 3718 kb)

Rab5-targeted aggregation in NIH-3T3 cells abrogates PDGF-induced circular dorsal ruffle formation. (MOV 1685 kb)

Local Rab5-targeted aggregation in rat hippocampal neurons. (MOV 8974 kb)

Local Rab5- and Rab11-targeted aggregation in the soma does not affect protrusion rate of growth cones. (MOV 3679 kb)

Local Rab5- and Rab11-targeted aggregation in the growth cones induce reduction in growth cone area. (MOV 1138 kb)

Local Rab5-targeted aggregation in the fast-protruding growth cones interferes with protrusion rate. (MOV 1697 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, M., Kim, C., Kim, J. et al. Optogenetic oligomerization of Rab GTPases regulates intracellular membrane trafficking. Nat Chem Biol 12, 431–436 (2016). https://doi.org/10.1038/nchembio.2064

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2064

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing