Brief Communication | Published:

A synthetic biochemistry module for production of bio-based chemicals from glucose

Nature Chemical Biology volume 12, pages 393395 (2016) | Download Citation

Abstract

Synthetic biochemistry, the cell-free production of biologically based chemicals, is a potentially high-yield, flexible alternative to in vivo metabolic engineering. To limit costs, cell-free systems must be designed to operate continuously with minimal addition of feedstock chemicals. We describe a robust, efficient synthetic glucose breakdown pathway and implement it for the production of bioplastic. The system's performance suggests that synthetic biochemistry has the potential to become a viable industrial alternative.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Accessions

NCBI Reference Sequence

References

  1. 1.

    ACS Catal. 1, 998–1009 (2011).

  2. 2.

    , , & Proc. Natl. Acad. Sci. USA 108, 18643–18648 (2011).

  3. 3.

    , , & J. Am. Chem. Soc. 133, 297–304 (2011).

  4. 4.

    , , & ACS Chem. Biol. 3, 499–511 (2008).

  5. 5.

    , & Green Chem. 15, 1708–1719 (2013).

  6. 6.

    & Biotechnol. Prog. 20, 102–109 (2004).

  7. 7.

    & J. R. Soc. Interface 6 (suppl. 4), S507–S521 (2009).

  8. 8.

    , , , & Biotechnol. Bioeng. 106, 376–389 (2010).

  9. 9.

    Biotechnol. Bioeng. 105, 663–677 (2010).

  10. 10.

    , , , & J. Appl. Microbiol. 102, 1437–1449 (2007).

  11. 11.

    , , & Indian J. Microbiol. 55, 235–249 (2015).

  12. 12.

    & Rev. Environ. Contam. Toxicol. 159, 1–24 (1999).

  13. 13.

    , , & J. Biosci. Bioeng. 95, 335–341 (2003).

  14. 14.

    & FEMS Microbiol. Lett. 168, 319–324 (1998).

  15. 15.

    & Appl. Microbiol. Biotechnol. 53, 545–552 (2000).

  16. 16.

    , & Nat. Commun. 5, 4113 (2014).

  17. 17.

    , , , & J. Bacteriol. 183, 2929–2936 (2001).

  18. 18.

    & J. Bacteriol. 197, 1157–1163 (2015).

  19. 19.

    , , & Biomacromolecules 1, 244–251 (2000).

  20. 20.

    , & Appl. Microbiol. Biotechnol. 63, 258–266 (2003).

  21. 21.

    et al. Science 319, 1215–1220 (2008).

  22. 22.

    et al. DNA Res. Int. J. Rapid Publ. Rep. Genes Genomes 12, 291–299 (2005).

  23. 23.

    , , & J. Bacteriol. 194, 2620–2629 (2012).

Download references

Acknowledgements

This work was supported by US DOE grant DE-FC02-02ER63421 and ARPA-E grant DE-AR0000556.

Author information

Affiliations

  1. Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, USA.

    • Paul H Opgenorth
    • , Tyler P Korman
    •  & James U Bowie

Authors

  1. Search for Paul H Opgenorth in:

  2. Search for Tyler P Korman in:

  3. Search for James U Bowie in:

Contributions

All authors contributed to the system design, design of experiments and data analysis. P.O. and T.P.K. performed the experiments. All the authors wrote the paper.

Competing interests

The authors have formed a company, Invizyne Technologies, that will seek to exploit cell-free technologies.

Corresponding author

Correspondence to James U Bowie.

Supplementary information

PDF files

  1. 1.

    Supplementary Text and Figures

    Supplementary Results, Supplementary Figures 1 and 2, Supplementary Tables 1–3 and Supplementary Note.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nchembio.2062

Further reading