Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct observation of intermediate states during the stepping motion of kinesin-1

Abstract

The dimeric motor protein kinesin-1 walks along microtubules by alternatingly hydrolyzing ATP and moving two motor domains ('heads'). Nanometer-precision single-molecule studies demonstrated that kinesin takes regular 8-nm steps upon hydrolysis of each ATP; however, the intermediate states between steps have not been directly visualized. Here, we employed high-temporal resolution dark-field microscopy to directly visualize the binding and unbinding of kinesin heads to or from microtubules during processive movement. Our observations revealed that upon unbinding from microtubules, the labeled heads were displaced rightward and underwent tethered diffusive movement. Structural and kinetic analyses of wild-type and mutant kinesins with altered neck linker lengths provided evidence that rebinding of the unbound head to the rear-binding site is prohibited by a tension increase in the neck linker and that ATP hydrolysis by the leading head is suppressed when both heads are bound to the microtubule, thereby explaining how the two heads coordinate to move in a hand-over-hand manner.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural and kinetic intermediates within the 8-nm forward step of the hand-over-hand movement of kinesin-1.
Figure 2: Observation of the two dimensional motion of the gold probe attached to a kinesin head at 10 μM ATP.
Figure 3: Observation of the biased tethered diffusional motion of the unbound head of kinesin-1.
Figure 4: Observation of the head motion during processive motility under various ATP conditions.
Figure 5: Observation of the head motion for the kinesin mutant with extended neck linker.
Figure 6: Observation of the head motion for the kinesin mutant with truncated neck linker.

Similar content being viewed by others

References

  1. Vale, R.D. & Milligan, R.A. The way things move: looking under the hood of molecular motor proteins. Science 288, 88–95 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Asenjo, A.B., Krohn, N. & Sosa, H. Configuration of the two kinesin motor domains during ATP hydrolysis. Nat. Struct. Biol. 10, 836–842 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Kaseda, K., Higuchi, H. & Hirose, K. Alternate fast and slow stepping of a heterodimeric kinesin molecule. Nat. Cell Biol. 5, 1079–1082 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Asbury, C.L., Fehr, A.N. & Block, S.M. Kinesin moves by an asymmetric hand-over-hand mechanism. Science 302, 2130–2134 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yildiz, A., Tomishige, M., Vale, R.D. & Selvin, P.R. Kinesin walks hand-over-hand. Science 303, 676–678 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Svoboda, K., Schmidt, C.F., Schnapp, B.J. & Block, S.M. Direct observation of kinesin stepping by optical trapping interferometry. Nature 365, 721–727 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Visscher, K., Schnitzer, M.J. & Block, S.M. Single kinesin molecules studied with a molecular force clamp. Nature 400, 184–189 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Carter, N.J. & Cross, R.A. Mechanics of the kinesin step. Nature 435, 308–312 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Block, S.M. Kinesin motor mechanics: binding, stepping, tracking, gating, and limping. Biophys. J. 92, 2986–2995 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hackney, D.D. Evidence for alternating head catalysis by kinesin during microtubule-stimulated ATP hydrolysis. Proc. Natl. Acad. Sci. USA 91, 6865–6869 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ma, Y.-Z. & Taylor, E.W. Interacting head mechanism of microtubule-kinesin ATPase. J. Biol. Chem. 272, 724–730 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Gilbert, S.P., Moyer, M.L. & Johnson, K.A. Alternating site mechanism of the kinesin ATPase. Biochemistry 37, 792–799 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Cross, R.A. The kinetic mechanism of kinesin. Trends Biochem. Sci. 29, 301–309 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Auerbach, S.D. & Johnson, K.A. Alternating site ATPase pathway of rat conventional kinesin. J. Biol. Chem. 280, 37048–37060 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Hackney, D.D. Processive motor movement. Science 316, 58–59 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Valentine, M.T. & Gilbert, S.P. To step or not to step? How biochemistry and mechanics influence processivity in Kinesin and Eg5. Curr. Opin. Cell Biol. 19, 75–81 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Asbury, C.L. Kinesin: world's tiniest biped. Curr. Opin. Cell Biol. 17, 89–97 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Gennerich, A. & Vale, R.D. Walking the walk: how kinesin and dynein coordinate their steps. Curr. Opin. Cell Biol. 21, 59–67 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mori, T., Vale, R.D. & Tomishige, M. How kinesin waits between steps. Nature 450, 750–754 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Asenjo, A.B. & Sosa, H. A mobile kinesin-head intermediate during the ATP-waiting state. Proc. Natl. Acad. Sci. USA 106, 5657–5662 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guydosh, N.R. & Block, S.M. Direct observation of the binding state of the kinesin head to the microtubule. Nature 461, 125–128 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yildiz, A., Tomishige, M., Gennerich, A. & Vale, R.D. Intramolecular strain coordinates kinesin stepping behavior along microtubules. Cell 134, 1030–1041 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dunn, A.R. & Spudich, J.A. Dynamics of the unbound head during myosin V processive translocation. Nat. Struct. Mol. Biol. 14, 246–248 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Ueno, H. et al. Simple dark-field microscopy with nanometer spatial precision and microsecond temporal resolution. Biophys. J. 98, 2014–2023 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nishikawa, S. et al. Switch between large hand-over-hand and small inchworm-like steps in myosin VI. Cell 142, 879–888 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Tomishige, M., Stuurman, N. & Vale, R.D. Single-molecule observations of neck linker conformational changes in the kinesin motor protein. Nat. Struct. Mol. Biol. 13, 887–894 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Cao, L. et al. The structure of apo-kinesin bound to tubulin links the nucleotide cycle to movement. Nat. Commun. 5, 5364 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Hyeon, C. & Onuchic, J.N. Mechanical control of the directional stepping dynamics of the kinesin motor. Proc. Natl. Acad. Sci. USA 104, 17382–17387 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hua, W., Chung, J. & Gelles, J. Distinguishing inchworm and hand-over-hand processive kinesin movement by neck rotation measurements. Science 295, 844–848 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Gutiérrez-Medina, B., Fehr, A.N. & Block, S.M. Direct measurements of kinesin torsional properties reveal flexible domains and occasional stalk reversals during stepping. Proc. Natl. Acad. Sci. USA 106, 17007–17012 (2009).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Verbrugge, S., Lansky, Z. & Peterman, E.J.G. Kinesin's step dissected with single-motor FRET. Proc. Natl. Acad. Sci. USA 106, 17741–17746 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Clancy, B.E., Behnke-Parks, W.M., Andreasson, J.O.L., Rosenfeld, S.S. & Block, S.M. A universal pathway for kinesin stepping. Nat. Struct. Mol. Biol. 18, 1020–1027 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rice, S. et al. A structural change in the kinesin motor protein that drives motility. Nature 402, 778–784 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Hyeon, C. & Onuchic, J.N. A structural perspective on the dynamics of kinesin motors. Biophys. J. 101, 2749–2759 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Milic, B., Andreasson, J.O.L., Hancock, W.O. & Block, S.M. Kinesin processivity is gated by phosphate release. Proc. Natl. Acad. Sci. USA 111, 14136–14140 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schnitzer, M.J. & Block, S.M. Kinesin hydrolyses one ATP per 8-nm step. Nature 388, 386–390 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Hua, W., Young, E.C., Fleming, M.L. & Gelles, J. Coupling of kinesin steps to ATP hydrolysis. Nature 388, 390–393 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Hackney, D.D., Stock, M.F., Moore, J. & Patterson, R.A. Modulation of kinesin half-site ADP release and kinetic processivity by a spacer between the head groups. Biochemistry 42, 12011–12018 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Shastry, S. & Hancock, W.O. Neck linker length determines the degree of processivity in kinesin-1 and kinesin-2 motors. Curr. Biol. 20, 939–943 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Alonso, M.C. et al. An ATP gate controls tubulin binding by the tethered head of kinesin-1. Science 316, 120–123 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hackney, D.D. The tethered motor domain of a kinesin-microtubule complex catalyzes reversible synthesis of bound ATP. Proc. Natl. Acad. Sci. USA 102, 18338–18343 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kikkawa, M. The role of microtubules in processive kinesin movement. Trends Cell Biol. 18, 128–135 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Hancock, W.O. & Howard, J. Kinesin's processivity results from mechanical and chemical coordination between the ATP hydrolysis cycles of the two motor domains. Proc. Natl. Acad. Sci. USA 96, 13147–13152 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Uemura, S. & Ishiwata, S. Loading direction regulates the affinity of ADP for kinesin. Nat. Struct. Biol. 10, 308–311 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Rosenfeld, S.S., Fordyce, P.M., Jefferson, G.M., King, P.H. & Block, S.M. Stepping and stretching. How kinesin uses internal strain to walk processively. J. Biol. Chem. 278, 18550–18556 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Klumpp, L.M., Hoenger, A. & Gilbert, S.P. Kinesin's second step. Proc. Natl. Acad. Sci. USA 101, 3444–3449 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Guydosh, N.R. & Block, S.M. Backsteps induced by nucleotide analogs suggest the front head of kinesin is gated by strain. Proc. Natl. Acad. Sci. USA 103, 8054–8059 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hyeon, C. & Onuchic, J.N. Internal strain regulates the nucleotide binding site of the kinesin leading head. Proc. Natl. Acad. Sci. USA 104, 2175–2180 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Andreasson, J.O.L. et al. Examining kinesin processivity within a general gating framework. eLife 4, e07403 (2015).

    Article  PubMed Central  Google Scholar 

  50. Dogan, M.Y., Can, S., Cleary, F.B., Purde, V. & Yildiz, A. Kinesin's front head is gated by the backward orientation of its neck linker. Cell Reports 10, 1967–1973 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Kerssemakers, J.W. et al. Assembly dynamics of microtubules at molecular resolution. Nature 442, 709–712 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Nakajima for support with cloning, M. Tanigawara for support with the preparation of colloidal gold and R. Vale for useful comments on the manuscript. We also acknowledge that the neck-linker mutants were first established by M.T. with R. Vale. H.I. is supported by Research Fellowships for Young Scientists from the Japan Society for the Promotion of Science. M.T. (no. 24370063), R.I. (no. 24370062, no. 26104507) and H.N. (no. 25251016) are supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology.

Author information

Authors and Affiliations

Authors

Contributions

M.T. and H.I. conceived and designed the experiments; R.I. constructed and refined the microscope with H.N.; H.I. performed the experiments with R.I.; Y.N. performed the experiments added in the revision; H.I., R.I. and Y.N. analyzed the data and prepared the figures; and M.T. wrote and R.I. edited the manuscript.

Corresponding author

Correspondence to Michio Tomishige.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–12 (PDF 2962 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isojima, H., Iino, R., Niitani, Y. et al. Direct observation of intermediate states during the stepping motion of kinesin-1. Nat Chem Biol 12, 290–297 (2016). https://doi.org/10.1038/nchembio.2028

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2028

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing