Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pooled screening for antiproliferative inhibitors of protein-protein interactions

Abstract

Protein-protein interactions (PPIs) are emerging as a promising new class of drug targets. Here, we present a novel high-throughput approach to screen inhibitors of PPIs in cells. We designed a library of 50,000 human peptide-binding motifs and used a pooled lentiviral system to express them intracellularly and screen for their effects on cell proliferation. We thereby identified inhibitors that drastically reduced the viability of a pancreatic cancer line (RWP1) while leaving a control line virtually unaffected. We identified their target interactions computationally, and validated a subset in experiments. We also discovered their potential mechanisms of action, including apoptosis and cell cycle arrest. Finally, we confirmed that synthetic lipopeptide versions of our inhibitors have similarly specific and dosage-dependent effects on cancer cell growth. Our screen reveals new drug targets and peptide drug leads, and it provides a rich data set covering phenotypes for the inhibition of thousands of interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of library design and identification of cancer-specific inhibitors.
Figure 2: Identification and experimental validation of cancer-specific inhibitors.
Figure 3: Characterization of peptide-target interactions.
Figure 4: Mechanism of action of cancer-specific inhibitors.

Similar content being viewed by others

References

  1. Booth, B. & Zemmel, R. Prospects for productivity. Nat. Rev. Drug Discov. 3, 451–456 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Overington, J.P., Al-Lazikani, B. & Hopkins, A.L. How many drug targets are there? Nat. Rev. Drug Discov. 5, 993–996 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Grant, S.K. Therapeutic protein kinase inhibitors. Cell. Mol. Life Sci. 66, 1163–1177 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Mullard, A. Protein-protein interaction inhibitors get into the groove. Nat. Rev. Drug Discov. 11, 173–175 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Fuller, J.C., Burgoyne, N.J. & Jackson, R.M. Predicting druggable binding sites at the protein-protein interface. Drug Discov. Today 14, 155–161 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Nero, T.L., Morton, C.J., Holien, J.K., Wielens, J. & Parker, M.W. Oncogenic protein interfaces: small molecules, big challenges. Nat. Rev. Cancer 14, 248–262 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. van Delft, M.F. et al. The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell 10, 389–399 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Souers, A.J. et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat. Med. 19, 202–208 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Liu, M. et al. D-peptide inhibitors of the p53–MDM2 interaction for targeted molecular therapy of malignant neoplasms. Proc. Natl. Acad. Sci. USA 107, 14321–14326 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shangary, S. & Wang, S. Small-molecule inhibitors of the MDM2-p53 protein-protein interaction to reactivate p53 function: a novel approach for cancer therapy. Annu. Rev. Pharmacol. Toxicol. 49, 223–241 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chang, Y.S. et al. Stapled α-helical peptide drug development: a potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy. Proc. Natl. Acad. Sci. USA 110, E3445–E3454 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Khoo, K.H., Verma, C.S. & Lane, D.P. Drugging the p53 pathway: understanding the route to clinical efficacy. Nat. Rev. Drug Discov. 13, 217–236 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Neduva, V. et al. Systematic discovery of new recognition peptides mediating protein interaction networks. PLoS Biol. 3, e405 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Neduva, V. & Russell, R.B. Linear motifs: evolutionary interaction switches. FEBS Lett. 579, 3342–3345 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Sims, D. et al. High-throughput RNA interference screening using pooled shRNA libraries and next generation sequencing. Genome Biol. 12, R104 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Amado, R.G. & Chen, I.S. Lentiviral vectors–the promise of gene therapy within reach? Science 285, 674–676 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Ivarsson, Y. et al. Large-scale interaction profiling of PDZ domains through proteomic peptide-phage display using human and viral phage peptidomes. Proc. Natl. Acad. Sci. USA 111, 2542–2547 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Natarajan, V. et al. Peptides genetically selected for NF-κB activation cooperate with oncogene Ras and model carcinogenic role of inflammation. Proc. Natl. Acad. Sci. USA 111, E474–E483 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Poyurovsky, M.V. et al. The C terminus of p53 binds the N-terminal domain of MDM2. Nat. Struct. Mol. Biol. 17, 982–989 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chène, P. et al. A small synthetic peptide, which inhibits the p53-hdm2 interaction, stimulates the p53 pathway in tumour cell lines. J. Mol. Biol. 299, 245–253 (2000).

    Article  PubMed  Google Scholar 

  21. Bossi, A. & Lehner, B. Tissue specificity and the human protein interaction network. Mol. Syst. Biol. 5, 260 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dinkel, H. et al. The eukaryotic linear motif resource ELM: 10 years and counting. Nucleic Acids Res. 42, D259–D266 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Finn, R.D. et al. Pfam: the protein families database. Nucleic Acids Res. 42, D222–D230 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Wazir, U., Jiang, W.G., Sharma, A.K. & Mokbel, K. Guanine nucleotide binding protein β 1: a novel transduction protein with a possible role in human breast cancer. Cancer Genomics Proteomics 10, 69–73 (2013).

    CAS  PubMed  Google Scholar 

  25. Barabási, A.L., Gulbahce, N. & Loscalzo, J. Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12, 56–68 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhong, Q. et al. Edgetic perturbation models of human inherited disorders. Mol. Syst. Biol. 5, 321 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sekar, R.B. & Periasamy, A. Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J. Cell Biol. 160, 629–633 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen, J., Wu, X., Lin, J. & Levine, A.J. mdm-2 inhibits the G1 arrest and apoptosis functions of the p53 tumor suppressor protein. Mol. Cell. Biol. 16, 2445–2452 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hermeking, H. et al. 14–3-3 sigma is a p53-regulated inhibitor of G2/M progression. Mol. Cell 1, 3–11 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Rajagopalan, S., Jaulent, A.M., Wells, M., Veprintsev, D.B. & Fersht, A.R. 14–3-3 activation of DNA binding of p53 by enhancing its association into tetramers. Nucleic Acids Res. 36, 5983–5991 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Masters, S.C. & Fu, H. 14–3-3 proteins mediate an essential anti-apoptotic signal. J. Biol. Chem. 276, 45193–45200 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Wang, B. et al. Isolation of high-affinity peptide antagonists of 14–3-3 proteins by phage display. Biochemistry 38, 12499–12504 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Ito, K., Caramori, G. & Adcock, I.M. Therapeutic potential of phosphatidylinositol 3-kinase inhibitors in inflammatory respiratory disease. J. Pharmacol. Exp. Ther. 321, 1–8 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Pumiglia, K.M. et al. A direct interaction between G-protein beta gamma subunits and the Raf-1 protein kinase. J. Biol. Chem. 270, 14251–14254 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Yoda, A. et al. Novel oncogenic mutations in the beta subunit of heteromeric G-proteins identified by functional cDNA library screening. Mol. Cancer Ther. 12 (suppl. 11), PR07 (2013).

    Google Scholar 

  36. Lamers, F. et al. Knockdown of survivin (BIRC5) causes apoptosis in neuroblastoma via mitotic catastrophe. Endocr. Relat. Cancer 18, 657–668 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Zhou, M. et al. DNA damage induces a novel p53-survivin signaling pathway regulating cell cycle and apoptosis in acute lymphoblastic leukemia cells. J. Pharmacol. Exp. Ther. 303, 124–131 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Abraham, J. et al. Eme1 is involved in DNA damage processing and maintenance of genomic stability in mammalian cells. EMBO J. 22, 6137–6147 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pamidi, A. et al. Functional interplay of p53 and Mus81 in DNA damage responses and cancer. Cancer Res. 67, 8527–8535 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, L. & Bulaj, G. Converting peptides into drug leads by lipidation. Curr. Med. Chem. 19, 1602–1618 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Naldini, L. et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263–267 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Zufferey, R., Nagy, D., Mandel, R.J., Naldini, L. & Trono, D. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat. Biotechnol. 15, 871–875 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    PubMed  PubMed Central  Google Scholar 

  44. Marcotte, R. et al. Essential gene profiles in breast, pancreatic, and ovarian cancer cells. Cancer Discov. 2, 172–189 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Higgins, M.E., Claremont, M., Major, J.E., Sander, C. & Lash, A.E. CancerGenes: a gene selection resource for cancer genome projects. Nucleic Acids Res. 35, D721–D726 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Berman, H.M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kanehisa, M. et al. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res. 42, D199–D205 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Wallrabe, H., Elangovan, M., Burchard, A., Periasamy, A. & Barroso, M. Confocal FRET microscopy to measure clustering of ligand-receptor complexes in endocytic membranes. Biophys. J. 85, 559–571 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Collins, J.M., Porter, K.A., Singh, S.K. & Vanier, G.S. High-efficiency solid phase peptide synthesis (HE-SPPS). Org. Lett. 16, 940–943 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the members of the Moffat laboratory for valuable technical assistance with lentiviral screening technology, usage of reagents and equipment. We thank A. Emili, T. Hughes and M. Garton for helpful comments on the manuscript. We thank A. Musacchio (Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology) for providing us with the INCENP cDNA clone. We thank F. Sicheri (Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto) for use of the ITC machine. P.M.K. acknowledges an Operating Grant from the Canadian Institute of Health Research (CIHR MOP-123526) and an Innovation Grant from the Canadian Cancer Society Research Institute (CCSRI# 702884). J.M. is a Tier 2 Canada Research Chair in Functional Genomics of Cancer. The research was supported in part by the Intramural Program of the National Institutes of Health, National Cancer Institute, Center for Cancer Research (N.I.T.).

Author information

Authors and Affiliations

Authors

Contributions

P.M.K. designed the project, provided study guidance and wrote the bulk of the manuscript. S.N. performed most experiments and contributed to writing of the manuscript. J.J. performed all bioinformatics analysis and interpreted results as well as assisting in manuscript preparation. C.C.-V. and M.-H.S. performed affinity measurements and helped with other biochemical experiments. Y.I. provided the oligonucleotide library and provided study guidance. N.T. provided synthetic peptides and guidance on their use. J.M. helped design the project and provided guidance on lentiviral screening.

Corresponding author

Correspondence to Philip M Kim.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–3 and Supplementary Figures 1–11. (PDF 2854 kb)

Supplementary Data Set 1

The list of human peptides for dropout screen and their effect on cell viability. (XLS 12194 kb)

Supplementary Data Set 2

A list of cancer-specific inhibitors. (XLS 217 kb)

Supplementary Data Set 3

Peptide-target interactions (XLS 301 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nim, S., Jeon, J., Corbi-Verge, C. et al. Pooled screening for antiproliferative inhibitors of protein-protein interactions. Nat Chem Biol 12, 275–281 (2016). https://doi.org/10.1038/nchembio.2026

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2026

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer