Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

YihQ is a sulfoquinovosidase that cleaves sulfoquinovosyl diacylglyceride sulfolipids

Abstract

Sulfoquinovose is produced by photosynthetic organisms at a rate of 1010 tons per annum and is degraded by bacteria as a source of carbon and sulfur. We have identified Escherichia coli YihQ as the first dedicated sulfoquinovosidase and the gateway enzyme to sulfoglycolytic pathways. Structural and mutagenesis studies unveiled the sequence signatures for binding the distinguishing sulfonate residue and revealed that sulfoquinovoside degradation is widespread across the tree of life.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: E. coli YihQ is a sulfoquinovosidase that hydrolyzes SQDG to SQ.
Figure 2: Structural identification of SQ-binding residues.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Harwood, J.L. & Nicholls, R.G. Biochem. Soc. Trans. 7, 440–447 (1979).

    Article  CAS  Google Scholar 

  2. Benning, C. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 53–75 (1998).

    Article  CAS  Google Scholar 

  3. Denger, K. et al. Nature 507, 114–117 (2014).

    Article  CAS  Google Scholar 

  4. Felux, A.K., Spiteller, D., Klebensberger, J. & Schleheck, D. Proc. Natl. Acad. Sci. USA 112, E4298–E4305 (2015).

    Article  CAS  Google Scholar 

  5. Shimojima, M. Prog. Lipid Res. 50, 234–239 (2011).

    Article  CAS  Google Scholar 

  6. Martelli, H.L. & Benson, A.A. Biochim. Biophys. Acta 93, 169–171 (1964).

    Article  CAS  Google Scholar 

  7. Roy, A.B., Hewlins, M.J., Ellis, A.J., Harwood, J.L. & White, G.F. Appl. Environ. Microbiol. 69, 6434–6441 (2003).

    Article  CAS  Google Scholar 

  8. Denger, K., Huhn, T., Hollemeyer, K., Schleheck, D. & Cook, A.M. FEMS Microbiol. Lett. 328, 39–45 (2012).

    Article  CAS  Google Scholar 

  9. Sugimoto, K., Sato, N. & Tsuzuki, M. FEBS Lett. 581, 4519–4522 (2007).

    Article  CAS  Google Scholar 

  10. Durham, B.P. et al. Proc. Natl. Acad. Sci. USA 112, 453–457 (2015).

    Article  CAS  Google Scholar 

  11. Shibuya, I. & Benson, A.A. Nature 192, 1186–1187 (1961).

    Article  CAS  Google Scholar 

  12. Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P.M. & Henrissat, B. Nucleic Acids Res. 42, D490–D495 (2014).

    Article  CAS  Google Scholar 

  13. Okuyama, M., Mori, H., Chiba, S. & Kimura, A. Protein Expr. Purif. 37, 170–179 (2004).

    Article  CAS  Google Scholar 

  14. Andersson, L., Carriére, F., Lowe, M.E., Nilsson, A. & Verger, R. Biochim. Biophys. Acta 1302, 236–240 (1996).

    Article  Google Scholar 

  15. Lee, S.S., Yu, S. & Withers, S.G. J. Am. Chem. Soc. 124, 4948–4949 (2002).

    Article  CAS  Google Scholar 

  16. McCarter, J.D. & Withers, S.G. J. Am. Chem. Soc. 118, 241–242 (1996).

    Article  CAS  Google Scholar 

  17. Quaroni, A. & Semenza, G. J. Biol. Chem. 251, 3250–3253 (1976).

    CAS  PubMed  Google Scholar 

  18. Okuyama, M. et al. Eur. J. Biochem. 268, 2270–2280 (2001).

    Article  CAS  Google Scholar 

  19. Davies, G.J., Planas, A. & Rovira, C. Acc. Chem. Res. 45, 308–316 (2012).

    Article  CAS  Google Scholar 

  20. Speciale, G., Thompson, A.J., Davies, G.J. & Williams, S.J. Curr. Opin. Struct. Biol. 28, 1–13 (2014).

    Article  CAS  Google Scholar 

  21. Tagami, T. et al. J. Biol. Chem. 288, 19296–19303 (2013).

    Article  CAS  Google Scholar 

  22. Studier, F.W. Protein Expr. Purif. 41, 207–234 (2005).

    Article  CAS  Google Scholar 

  23. Winter, G. J. Appl. Cryst. 43, 186–190 (2010).

    Article  CAS  Google Scholar 

  24. Collaborative Computational Project, Number 4. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  25. Celniker, G. et al. Isr. J. Chem. 53, 199–206 (2013).

    Article  CAS  Google Scholar 

  26. Ashkenazy, H., Erez, E., Martz, E., Pupko, T. & Ben-Tal, N. Nucleic Acids Res. 38, W529–W533 (2010).

    Article  CAS  Google Scholar 

  27. The PyMOL Molecular Graphics System version 1.7.4 (Schrödinger, LLC).

  28. McNicholas, S., Potterton, E., Wilson, K.S. & Noble, M.E.M. Acta Crystallogr. D Biol. Crystallogr. 67, 386–394 (2011).

    Article  CAS  Google Scholar 

  29. Dereeper, A. et al. Nucleic Acids Res. 36, W465–W469 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S.G. Withers for the gift of 5-fluoro-β-L-idopyranosyl fluoride and N.A. Williamson for technical assistance. This work was supported by grants from the UK Biotechnology and Biological Sciences Research Council and the European Research Council (AdG-322942 to G.J.D.), the Australian Research Council (to S.J.W.), the Ramaciotti Foundation and the Victorian Endowment for Science Knowledge and Innovation, with additional support from the Australian Cancer Research Foundation and Victorian State Government Operational Infrastructure Support, NHMRC IRIISS grant 9000220 (to E.D.G.-B.). We thank the Diamond Light Source (Didcot, UK) for access to beamlines IO4, IO4-1 and IO2 (proposal number mx-9948).

Author information

Authors and Affiliations

Authors

Contributions

G.S. synthesized substrate and performed LC/MS analysis. G.S. and E.D.G.-B. cloned, expressed, mutagenized and purified enzymes and performed kinetic analyses. Y.J. performed crystallographic studies and prepared the accompanying figures. Experiments were designed by G.J.D., S.J.W. and E.D.G.-B., who collectively wrote the paper.

Corresponding author

Correspondence to Ethan D Goddard-Borger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–3 and Supplementary Figures 1–7. (PDF 2820 kb)

Supplementary Note

Synthetic Procedures (PDF 529 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Speciale, G., Jin, Y., Davies, G. et al. YihQ is a sulfoquinovosidase that cleaves sulfoquinovosyl diacylglyceride sulfolipids. Nat Chem Biol 12, 215–217 (2016). https://doi.org/10.1038/nchembio.2023

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2023

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology