Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A transcription activator–like effector (TALE) induction system mediated by proteolysis

Abstract

Simple and predictable trans-acting regulatory tools are needed in the fields of synthetic biology and metabolic engineering to build complex genetic circuits and optimize the levels of native and heterologous gene products. Transcription activator−like effectors (TALEs) are bacterial virulence factors that have recently gained traction in biotechnology applications owing to their customizable DNA-binding specificity. In this work we expanded the versatility of these transcription factors to create an inducible TALE system by inserting tobacco-etch virus (TEV) protease recognition sites into the TALE backbone. The resulting engineered TALEs maintain transcriptional repression of their target genes in Escherichia coli, but are degraded after induction of the TEV protease, thereby promoting expression of the previously repressed target gene of interest. This TALE-TEV technology enables both repression and induction of plasmid or chromosomal target genes in a manner analogous to traditional repressor proteins but with the added flexibility of being operator-agnostic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the TALE-TEV repression-induction system.
Figure 2: Characterization of the proof-of-concept TALE-TEV system.
Figure 3: Comparison of the TALE-TEV system to the LacI-IPTG system.
Figure 4: Characterization of TALE scaffolds with alternative TEV protease cleavage sites.
Figure 5: Targeting chromosomal loci and multiplexing using the TALE-TEV system.
Figure 6: Derepression by sequestration of the TALE.

Similar content being viewed by others

References

  1. Kaern, M., Blake, W.J. & Collins, J.J. The engineering of gene regulatory networks. Annu. Rev. Biomed. Eng. 5, 179–206 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Brophy, J.A. & Voigt, C.A. Principles of genetic circuit design. Nat. Methods 11, 508–520 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hsu, P.D., Lander, E.S. & Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262–1278 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sun, N. & Zhao, H. Transcription activator-like effector nucleases (TALENs): a highly efficient and versatile tool for genome editing. Biotechnol. Bioeng. 110, 1811–1821 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Boch, J. et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326, 1509–1512 (2009).

    CAS  PubMed  Google Scholar 

  6. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Citorik, R.J., Mimee, M. & Lu, T.K. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat. Biotechnol. 32, 1141–1145 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bikard, D. et al. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat. Biotechnol. 32, 1146–1150 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Miyanari, Y., Ziegler-Birling, C. & Torres-Padilla, M.E. Live visualization of chromatin dynamics with fluorescent TALEs. Nat. Struct. Mol. Biol. 20, 1321–1324 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Chen, B. et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155, 1479–1491 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Qi, L.S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Politz, M.C., Copeland, M.F. & Pfleger, B.F. Artificial repressors for controlling gene expression in bacteria. Chem. Commun. (Camb.) 49, 4325–4327 (2013).

    Article  CAS  Google Scholar 

  13. Nielsen, A.A. & Voigt, C.A. Multi-input CRISPR/Cas genetic circuits that interface host regulatory networks. Mol. Syst. Biol. 10, 763 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gilbert, L.A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442–451 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Perez-Pinera, P. et al. Synergistic and tunable human gene activation by combinations of synthetic transcription factors. Nat. Methods 10, 239–242 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Boissel, S. et al. megaTALs: a rare-cleaving nuclease architecture for therapeutic genome engineering. Nucleic Acids Res. 42, 2591–2601 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Li, Y., Moore, R., Guinn, M. & Bleris, L. Transcription activator-like effector hybrids for conditional control and rewiring of chromosomal transgene expression. Sci. Rep. 2, 897 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Konermann, S. et al. Optical control of mammalian endogenous transcription and epigenetic states. Nature 500, 472–476 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mercer, A.C., Gaj, T., Sirk, S.J., Lamb, B.M. & Barbas III, C.F. Regulation of endogenous human gene expression by ligand-inducible TALE transcription factors. ACS Synth. Biol. 3, 723–730 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Lucast, L.J., Batey, R.T. & Doudna, J.A. Large-scale purification of a stable form of recombinant tobacco etch virus protease. Biotechniques 30, 544–546 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Bertrand, K.P., Postle, K., Wray, L.V. Jr. & Reznikoff, W.S. Overlapping divergent promoters control expression of Tn10 tetracycline resistance. Gene 23, 149–156 (1983).

    Article  CAS  PubMed  Google Scholar 

  22. Lienert, F. et al. Two- and three-input TALE-based AND logic computation in embryonic stem cells. Nucleic Acids Res. 41, 9967–9975 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Streubel, J., Blücher, C., Landgraf, A. & Boch, J. TAL effector RVD specificities and efficiencies. Nat. Biotechnol. 30, 593–595 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Mak, A.N., Bradley, P., Cernadas, R.A., Bogdanove, A.J. & Stoddard, B.L. The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 335, 716–719 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Phan, J. et al. Structural basis for the substrate specificity of tobacco etch virus protease. J. Biol. Chem. 277, 50564–50572 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Dewey, D.L. & Work, E. Diaminopimelic acid decarboxylase and lysine: diaminopimelic acid decarboxylase. Nature 169, 533–534 (1952).

    Article  CAS  PubMed  Google Scholar 

  27. Kapust, R.B. et al. Tobacco etch virus protease: mechanism of autolysis and rational design of stable mutants with wild-type catalytic proficiency. Protein Eng. 14, 993–1000 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Copeland, M.F., Politz, M.C. & Pfleger, B.F. Application of TALEs, CRISPR/Cas and sRNAs as trans-acting regulators in prokaryotes. Curr. Opin. Biotechnol. 29, 46–54 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. de Lange, O., Binder, A. & Lahaye, T. From dead leaf, to new life: TAL effectors as tools for synthetic biology. Plant J. 78, 753–771 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Cuculis, L., Abil, Z., Zhao, H. & Schroeder, C.M. Direct observation of TALE protein dynamics reveals a two-state search mechanism. Nat. Commun. 6, 7277 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Kay, S., Hahn, S., Marois, E., Hause, G. & Bonas, U. A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science 318, 648–651 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Gao, H., Wu, X., Chai, J. & Han, Z. Crystal structure of a TALE protein reveals an extended N-terminal DNA binding region. Cell Res. 22, 1716–1720 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Meckler, J.F. et al. Quantitative analysis of TALE-DNA interactions suggests polarity effects. Nucleic Acids Res. 41, 4118–4128 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Garg, A., Lohmueller, J.J., Silver, P.A. & Armel, T.Z. Engineering synthetic TAL effectors with orthogonal target sites. Nucleic Acids Res. 40, 7584–7595 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pérez-Quintero, A.L. et al. An improved method for TAL effectors DNA-binding sites prediction reveals functional convergence in TAL repertoires of Xanthomonas oryzae strains. PLoS One 8, e68464 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mali, P. et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 31, 833–838 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Na, D. et al. Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nat. Biotechnol. 31, 170–174 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Esvelt, K.M. et al. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat. Methods 10, 1116–1121 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zalatan, J.G. et al. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 160, 339–350 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Cameron, D.E. & Collins, J.J. Tunable protein degradation in bacteria. Nat. Biotechnol. 32, 1276–1281 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Guglielmi, L. & Martineau, P. Expression of single-chain Fv fragments in E. coli cytoplasm. Methods Mol. Biol. 562, 215–224 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gibson, D.G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Lynch, M.D. & Gill, R.T. Broad host range vectors for stable genomic library construction. Biotechnol. Bioeng. 94, 151–158 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Puigbò, P., Guzmán, E., Romeu, A. & Garcia-Vallvé, S. OPTIMIZER: a web server for optimizing the codon usage of DNA sequences. Nucleic Acids Res. 35, W126–W131 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lee, T.S. et al. BglBrick vectors and datasheets: a synthetic biology platform for gene expression. J. Biol. Eng. 5, 12 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Huang, D., Holtz, W.J. & Maharbiz, M.M. A genetic bistable switch utilizing nonlinear protein degradation. J. Biol. Eng. 6, 9 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Stringer, A.M. et al. FRUIT, a scar-free system for targeted chromosomal mutagenesis, epitope tagging, and promoter replacement in Escherichia coli and Salmonella enterica. PLoS One 7, e44841 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Datsenko, K.A. & Wanner, B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97, 6640–6645 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ellis, H.M., Yu, D., DiTizio, T. & Court, D.L. High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proc. Natl. Acad. Sci. USA 98, 6742–6746 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Leveau, J.H. & Lindow, S.E. Predictive and interpretive simulation of green fluorescent protein expression in reporter bacteria. J. Bacteriol. 183, 6752–6762 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pédelacq, J.D., Cabantous, S., Tran, T., Terwilliger, T.C. & Waldo, G.S. Engineering and characterization of a superfolder green fluorescent protein. Nat. Biotechnol. 24, 79–88 (2006).

    Article  PubMed  Google Scholar 

  52. Untergasser, A. et al. Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res. 35, W71–W74 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by the US National Science Foundation (NSF) (CBET-114678) and The William F. Vilas Trust. M.F.C. and M.C.P. were supported by NHGRI Genomic Sciences Training Program (T32 HG002760). A.L.M. was supported by NSF SEES fellowship (GEO-1215871). M.C.P. was supported by a US National Institutes of Health (NIH) Biotechnology Training Program (T32 GM008349). We thank D. Waugh for providing guidance on TEV protease variants, and J. Cameron for assistance with taking the photographs that appear in this paper.

Author information

Authors and Affiliations

Authors

Contributions

M.F.C. and B.F.P. conceived the study. M.F.C. and M.C.P. designed and performed the experiments with the following exceptions. A.L.M. proposed, and helped design and perform, the TEV Km mutant experiment. C.B.J. assisted with preliminary experimental work. M.F.C. and M.C.P. analyzed the data. M.F.C., M.C.P. and B.F.P. wrote the manuscript.

Corresponding author

Correspondence to Brian F Pfleger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–12, Supplementary Tables 1–3 and Supplementary Note (PDF 5213 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Copeland, M., Politz, M., Johnson, C. et al. A transcription activator–like effector (TALE) induction system mediated by proteolysis. Nat Chem Biol 12, 254–260 (2016). https://doi.org/10.1038/nchembio.2021

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2021

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology