Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A two-state activation mechanism controls the histone methyltransferase Suv39h1

Abstract

Specialized chromatin domains contribute to nuclear organization and regulation of gene expression. Gene-poor regions are di- and trimethylated at lysine 9 of histone H3 (H3K9me2 and H3K9me3) by the histone methyltransferase Suv39h1. This enzyme harnesses a positive feedback loop to spread H3K9me2 and H3K9me3 over extended heterochromatic regions. However, little is known about how feedback loops operate on complex biopolymers such as chromatin, in part because of the difficulty in obtaining suitable substrates. Here we describe the synthesis of multidomain 'designer chromatin' templates and their application to dissecting the regulation of human Suv39h1. We uncovered a two-step activation switch where H3K9me3 recognition and subsequent anchoring of the enzyme to chromatin allosterically promotes methylation activity and confirmed that this mechanism contributes to chromatin recognition in cells. We propose that this mechanism serves as a paradigm in chromatin biochemistry, as it enables highly dynamic sampling of chromatin state combined with targeted modification of desired genomic regions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Heterotypic designer chromatin substrates.
Figure 2: Reconstitution of Suv39h1-dependent heterochromatin spreading in vitro.
Figure 3: Trans activation of Suv39h1.
Figure 4: The N terminus of Suv39h1 contributes to chromatin binding in vitro.
Figure 5: The Suv39h1 N terminus contributes to chromatin binding in vivo.

Similar content being viewed by others

References

  1. Kornberg, R.D. Structure of chromatin. Annu. Rev. Biochem. 46, 931–954 (1977).

    Article  CAS  Google Scholar 

  2. Woodcock, C.L. & Ghosh, R.P. Chromatin higher-order structure and dynamics. Cold Spring Harb. Perspect. Biol. 2, a000596 (2010).

    Article  Google Scholar 

  3. Rea, S. et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406, 593–599 (2000).

    Article  CAS  Google Scholar 

  4. Nakayama, J., Rice, J.C., Strahl, B.D., Allis, C.D. & Grewal, S.I. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292, 110–113 (2001).

    Article  CAS  Google Scholar 

  5. Grewal, S.I. & Moazed, D. Heterochromatin and epigenetic control of gene expression. Science 301, 798–802 (2003).

    Article  CAS  Google Scholar 

  6. Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116–120 (2001).

    Article  CAS  Google Scholar 

  7. Noma, K., Allis, C.D. & Grewal, S.I.S. Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science 293, 1150–1155 (2001).

    Article  CAS  Google Scholar 

  8. Talbert, P.B. & Henikoff, S. Spreading of silent chromatin: inaction at a distance. Nat. Rev. Genet. 7, 793–803 (2006).

    Article  CAS  Google Scholar 

  9. Peters, A.H. et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107, 323–337 (2001).

    Article  CAS  Google Scholar 

  10. Hahn, M., Dambacher, S. & Schotta, G. Heterochromatin dysregulation in human diseases. J. Appl. Physiol. 109, 232–242 (2010).

    Article  CAS  Google Scholar 

  11. Zhang, K., Mosch, K., Fischle, W. & Grewal, S.I. Roles of the Clr4 methyltransferase complex in nucleation, spreading and maintenance of heterochromatin. Nat. Struct. Mol. Biol. 15, 381–388 (2008).

    Article  CAS  Google Scholar 

  12. Melcher, M. et al. Structure-function analysis of SUV39H1 reveals a dominant role in heterochromatin organization, chromosome segregation, and mitotic progression. Mol. Cell. Biol. 20, 3728–3741 (2000).

    Article  CAS  Google Scholar 

  13. Al-Sady, B., Madhani, H.D. & Narlikar, G.J. Division of labor between the chromodomains of HP1 and Suv39 methylase enables coordination of heterochromatin spread. Mol. Cell 51, 80–91 (2013).

    Article  CAS  Google Scholar 

  14. Margueron, R. et al. Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 461, 762–767 (2009).

    Article  CAS  Google Scholar 

  15. Torres, I.O. et al. Histone demethylase KDM5A is regulated by its reader domain through a positive-feedback mechanism. Nat. Commun. 6, 6204 (2015).

    Article  CAS  Google Scholar 

  16. Rando, O.J. Global patterns of histone modifications. Curr. Opin. Genet. Dev. 17, 94–99 (2007).

    Article  CAS  Google Scholar 

  17. Müller, M.M. & Muir, T.W. Histones: at the crossroads of peptide and protein chemistry. Chem. Rev. 115, 2296–2349 (2015).

    Article  Google Scholar 

  18. McGinty, R.K. & Tan, S. Nucleosome structure and function. Chem. Rev. 115, 2255–2273 (2015).

    Article  CAS  Google Scholar 

  19. Song, F. et al. Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units. Science 344, 376–380 (2014).

    Article  CAS  Google Scholar 

  20. Hsieh, T.H. et al. Mapping nucleosome resolution chromosome folding in yeast by Micro-C. Cell 162, 108–119 (2015).

    Article  CAS  Google Scholar 

  21. Zheng, C. & Hayes, J.J. Intra- and inter-nucleosomal protein-DNA interactions of the core histone tail domains in a model system. J. Biol. Chem. 278, 24217–24224 (2003).

    Article  CAS  Google Scholar 

  22. Blacketer, M.J., Feely, S.J. & Shogren-Knaak, M.A. Nucleosome interactions and stability in an ordered nucleosome array model system. J. Biol. Chem. 285, 34597–34607 (2010).

    Article  CAS  Google Scholar 

  23. Lowary, P.T. & Widom, J. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J. Mol. Biol. 276, 19–42 (1998).

    Article  CAS  Google Scholar 

  24. Hansen, J.C. Conformational dynamics of the chromatin fiber in solution: determinants, mechanisms, and functions. Annu. Rev. Biophys. Biomol. Struct. 31, 361–392 (2002).

    Article  CAS  Google Scholar 

  25. Erdel, F., Müller-Ott, K. & Rippe, K. Establishing epigenetic domains via chromatin-bound histone modifiers. Ann. NY Acad. Sci. 1305, 29–43 (2013).

    Article  CAS  Google Scholar 

  26. Chin, H.G., Patnaik, D., Estève, P.-O., Jacobsen, S.E. & Pradhan, S. Catalytic properties and kinetic mechanism of human recombinant Lys-9 histone H3 methyltransferase SUV39H1: participation of the chromodomain in enzymatic catalysis. Biochemistry 45, 3272–3284 (2006).

    Article  CAS  Google Scholar 

  27. Yamamoto, K. & Sonoda, M. Self-interaction of heterochromatin protein 1 is required for direct binding to histone methyltransferase, SUV39H1. Biochem. Biophys. Res. Commun. 301, 287–292 (2003).

    Article  CAS  Google Scholar 

  28. Muramatsu, D., Singh, P.B., Kimura, H., Tachibana, M. & Shinkai, Y. Pericentric heterochromatin generated by HP1 protein interaction-defective histone methyltransferase Suv39h1. J. Biol. Chem. 288, 25285–25296 (2013).

    Article  CAS  Google Scholar 

  29. Müller-Ott, K. et al. Specificity, propagation, and memory of pericentric heterochromatin. Mol. Syst. Biol. 10, 746 (2014).

    Article  Google Scholar 

  30. Krouwels, I.M. et al. A glue for heterochromatin maintenance: stable SUV39H1 binding to heterochromatin is reinforced by the SET domain. J. Cell Biol. 170, 537–549 (2005).

    Article  CAS  Google Scholar 

  31. Stewart, M.D., Li, J. & Wong, J. Relationship between histone H3 lysine 9 methylation, transcription repression, and heterochromatin protein 1 recruitment. Mol. Cell. Biol. 25, 2525–2538 (2005).

    Article  CAS  Google Scholar 

  32. Hathaway, N.A. et al. Dynamics and memory of heterochromatin in living cells. Cell 149, 1447–1460 (2012).

    Article  CAS  Google Scholar 

  33. Brown, Z.Z., Müller, M.M., Kong, H.-E., Lewis, P.W. & Muir, T.W. Targeted histone peptides: insights into the spatial regulation of the methyltransferase PRC2 by using a surrogate of heterotypic chromatin. Angew. Chem. Int. Ed. Engl. 54, 6457–6461 (2015).

    Article  CAS  Google Scholar 

  34. Johnson, A. et al. Reconstitution of heterochromatin-dependent transcriptional gene silencing. Mol. Cell 35, 769–781 (2009).

    Article  CAS  Google Scholar 

  35. Porro, A. et al. Functional characterization of the TERRA transcriptome at damaged telomeres. Nat. Commun. 5, 5379 (2014).

    Article  CAS  Google Scholar 

  36. Hall, I.M. et al. Establishment and maintenance of a heterochromatin domain. Science 297, 2232–2237 (2002).

    Article  CAS  Google Scholar 

  37. Wu, H. et al. Structural biology of human H3K9 methyltransferases. PLoS ONE 5, e8570 (2010).

    Article  Google Scholar 

  38. Wang, T. et al. Crystal structure of the human SUV39H1 chromodomain and its recognition of histone H3K9me2/3. PLoS ONE 7, e52977 (2012).

    Article  CAS  Google Scholar 

  39. Min, J., Zhang, X., Cheng, X., Grewal, S.I. & Xu, R.-M. Structure of the SET domain histone lysine methyltransferase Clr4. Nat. Struct. Biol. 9, 828–832 (2002).

    CAS  PubMed  Google Scholar 

  40. Liu, N. et al. Recognition of H3K9 methylation by GLP is required for efficient establishment of H3K9 methylation, rapid target gene repression, and mouse viability. Genes Dev. 29, 379–393 (2015).

    Article  CAS  Google Scholar 

  41. Li, S. & Shogren-Knaak, M.A. The Gcn5 bromodomain of the SAGA complex facilitates cooperative and cross-tail acetylation of nucleosomes. J. Biol. Chem. 284, 9411–9417 (2009).

    Article  CAS  Google Scholar 

  42. Nguyen, U.T.T. et al. Accelerated chromatin biochemistry using DNA-barcoded nucleosome libraries. Nat. Methods 11, 834–840 (2014).

    Article  CAS  Google Scholar 

  43. Sprague, B.L., Pego, R.L., Stavreva, D.A. & McNally, J.G. Analysis of binding reactions by fluorescence recovery after photobleaching. Biophys. J. 86, 3473–3495 (2004).

    Article  CAS  Google Scholar 

  44. Blanco-Canosa, J.B. & Dawson, P.E. An efficient Fmoc-SPPS approach for the generation of thioester peptide precursors for use in native chemical ligation. Angew. Chem. Int. Ed. Engl. 47, 6851–6855 (2008).

    Article  CAS  Google Scholar 

  45. Wan, Q. & Danishefsky, S.J. Free-radical-based, specific desulfurization of cysteine: a powerful advance in the synthesis of polypeptides and glycopolypeptides. Angew. Chem. Int. Ed. Engl. 46, 9248–9252 (2007).

    Article  CAS  Google Scholar 

  46. Dyer, P.N. et al. Reconstitution of nucleosome core particles from recombinant histones and DNA. Methods Enzymol. 375, 23–44 (2004).

    Article  CAS  Google Scholar 

  47. Dorigo, B., Schalch, T., Bystricky, K. & Richmond, T.J. Chromatin fiber folding: requirement for the histone H4 N-terminal tail. J. Mol. Biol. 327, 85–96 (2003).

    Article  CAS  Google Scholar 

  48. Fierz, B. et al. Histone H2B ubiquitylation disrupts local and higher-order chromatin compaction. Nat. Chem. Biol. 7, 113–119 (2011).

    Article  CAS  Google Scholar 

  49. Hiragami-Hamada, K. et al. N-terminal phosphorylation of HP1α promotes its chromatin binding. Mol. Cell. Biol. 31, 1186–1200 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank U. Nguyen and Y. David for help with tissue culture; G. Laevsky for advice on microscopy; P. Lewis for providing biotinylated H3 peptides; C.D. Allis, G. Debelouchina, Z. Brown, B. Wang and C. Jenness for helpful discussions; and K. Jani for careful proofreading of this manuscript. NIH-3T3 cells were a gift from J. Schwarzbauer (Princeton University). Funding provided by the Swiss National Science Foundation (postdoctoral fellowships to M.M.M. and B.F.) and the US National Institutes of Health (grant R01-GM107047 to T.W.M.).

Author information

Authors and Affiliations

Authors

Contributions

M.M.M., B.F. and T.W.M. conceived the project; M.M.M., B.F., L.B. and G.L. designed and performed experiments with supervision from T.W.M.; all authors analyzed data; M.M.M. and T.W.M. wrote the manuscript with contributions from all authors.

Corresponding author

Correspondence to Tom W Muir.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results and Supplementary Figures 1–14. (PDF 2549 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müller, M., Fierz, B., Bittova, L. et al. A two-state activation mechanism controls the histone methyltransferase Suv39h1. Nat Chem Biol 12, 188–193 (2016). https://doi.org/10.1038/nchembio.2008

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2008

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing