Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Discovery and characterization of a marine bacterial SAM-dependent chlorinase

Abstract

Halogen atom incorporation into a scaffold of bioactive compounds often amplifies biological activity, as is the case for the anticancer agent salinosporamide A (1), a chlorinated natural product from the marine bacterium Salinispora tropica. Significant effort in understanding enzymatic chlorination shows that oxidative routes predominate to form reactive electrophilic or radical chlorine species. Here we report the genetic, biochemical and structural characterization of the chlorinase SalL, which halogenates S-adenosyl-L-methionine (2) with chloride to generate 5′-chloro-5′-deoxyadenosine (3) and L-methionine (4) in a rarely observed nucleophilic substitution strategy analogous to that of Streptomyces cattleya fluorinase. Further metabolic tailoring produces a halogenated polyketide synthase substrate specific for salinosporamide A biosynthesis. SalL also accepts bromide and iodide as substrates, but not fluoride. High-resolution crystal structures of SalL and active site mutants complexed with substrates and products support the SN2 nucleophilic substitution mechanism and further illuminate halide specificity in this newly discovered halogenase family.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Biosynthesis and structures of salinosporamides A and B.
Figure 2: Structures of wild-type SalL and the Y70T mutant.
Figure 3: SalL double-mutant Y70T G131S and structural comparison with fluorinase.

Accession codes

Accessions

Protein Data Bank

References

  1. Feling, R.H. et al. Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinospora. Angew. Chem. Int. Edn. Engl. 42, 355–357 (2003).

    Article  CAS  Google Scholar 

  2. Maldonado, L.A. et al. Salinispora arenicola gen. nov., sp. nov. and Salinispora tropica sp. nov., obligate marine actinomycetes belonging to the family Micromonosporaceae. Int. J. Syst. Evol. Microbiol. 55, 1759–1766 (2005).

    Article  CAS  Google Scholar 

  3. Williams, P.G. et al. New cytotoxic salinosporamides from the marine actinomycete Salinispora tropica. J. Org. Chem. 70, 6196–6203 (2005).

    Article  CAS  Google Scholar 

  4. Voorhees, P.M., Dees, E.C., O'Neil, B. & Orlowski, R.Z. The proteasome as a target for cancer therapy. Clin. Cancer Res. 9, 6316–6325 (2003).

    CAS  PubMed  Google Scholar 

  5. Chauhan, D. et al. A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib. Cancer Cell 8, 407–419 (2005).

    Article  CAS  Google Scholar 

  6. Beer, L.L. & Moore, B.S. Biosynthetic convergence of salinosporamides A and B in the marine actinomycete Salinispora tropica. Org. Lett. 9, 845–848 (2007).

    Article  CAS  Google Scholar 

  7. Udwary, D.W. et al. Genome sequencing reveals complex secondary metabolome in the marine actinomycete Salinispora tropica. Proc. Natl. Acad. Sci. USA 104, 10376–10381 (2007).

    Article  CAS  Google Scholar 

  8. Vaillancourt, F.H., Yeh, E., Vosburg, D.A., Garneau-Tsodikova, S. & Walsh, C.T. Nature's inventory of halogenation catalysts: oxidative strategies predominate. Chem. Rev. 106, 3364–3378 (2006).

    Article  CAS  Google Scholar 

  9. Dong, C. et al. Crystal structure and mechanism of a bacterial fluorinating enzyme. Nature 427, 561–565 (2004).

    Article  CAS  Google Scholar 

  10. Huang, F. et al. The gene cluster for fluorometabolite biosynthesis in Streptomyces cattleya: a thioesterase confers resistance to fluoroacetyl-coenzyme A. Chem. Biol. 13, 475–484 (2006).

    Article  CAS  Google Scholar 

  11. Deng, H. et al. The fluorinase from Streptomyces cattleya is also a chlorinase. Angew. Chem. Int. Edn. Engl. 45, 759–762 (2006).

    Article  CAS  Google Scholar 

  12. Lam, K.S. et al. Effects of halogens on the production of salinosporamides by the obligate marine actinomycete Salinispora tropica. J. Antibiot. (Tokyo) 60, 13–19 (2007).

    Article  CAS  Google Scholar 

  13. Harper, D.B. & O'Hagan, D. The fluorinated natural products. Nat. Prod. Rep. 11, 123–133 (1994).

    Article  CAS  Google Scholar 

  14. Cadicamo, C.D., Courtieu, J., Deng, H., Meddour, A. & O'Hagan, D. Enzymatic fluorination in Streptomyces cattleya takes place with an inversion of configuration consistent with an SN2 reaction mechanism. ChemBioChem 5, 685–690 (2004).

    Article  CAS  Google Scholar 

  15. Wuosmaa, A.M. & Hager, L.P. Methyl chloride transferase: a carbocation route for biosynthesis of halometabolites. Science 249, 160–162 (1990).

    Article  CAS  Google Scholar 

  16. Ni, X. & Hager, L.P. cDNA cloning of Batis maritima methyl chloride transferase and purification of the enzyme. Proc. Natl. Acad. Sci. USA 95, 12866–12871 (1998).

    Article  CAS  Google Scholar 

  17. Ni, X. & Hager, L.P. Expression of Batis maritima methyl chloride transferase in Escherichia coli. Proc. Natl. Acad. Sci. USA 96, 3611–3615 (1999).

    Article  CAS  Google Scholar 

  18. Gust, B., Challis, G.L., Fowler, K., Kieser, T. & Chater, K.F. PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc. Natl. Acad. Sci. USA 100, 1541–1546 (2003).

    Article  CAS  Google Scholar 

  19. Datsenko, K.A. & Wanner, B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97, 6640–6645 (2000).

    Article  CAS  Google Scholar 

  20. Jez, J.M., Ferrer, J.L., Bowman, M.E., Dixon, R.A. & Noel, J.P. Dissection of malonyl-coenzyme A decarboxylation from polyketide formation in the reaction mechanism of a plant polyketide synthase. Biochemistry 39, 890–902 (2000).

    Article  CAS  Google Scholar 

  21. Dam, J. & Schuck, P. Calculating sedimentation coefficient distributions by direct modeling of sedimentation velocity concentration profiles. Methods Enzymol. 384, 185–212 (2004).

    Article  CAS  Google Scholar 

  22. Schaffrath, C., Deng, H. & O'Hagan, D. Isolation and characterisation of 5′-fluorodeoxyadenosine synthase, a fluorination enzyme from Streptomyces cattleya. FEBS Lett. 547, 111–114 (2003).

    Article  CAS  Google Scholar 

  23. Kabsch, W. in International Tables for Crystallography (eds. Rossman, M.G. & Arnold, E.) Ch. 11.3 (Kluwer Academic Publisher, Dordrecht, Netherlands, 2001).

    Google Scholar 

  24. Vagin, A.A. & Isupov, M.N. Spherically averaged phased translation function and its application to the search for molecules and fragments in electron-density maps. Acta Crystallogr. D Biol. Crystallogr. 57, 1451–1456 (2001).

    Article  CAS  Google Scholar 

  25. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  26. Vagin, A.A. et al. REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. Acta Crystallogr. D Biol. Crystallogr. 60, 2184–2195 (2004).

    Article  Google Scholar 

  27. Laskowski, R.A. Structural quality assurance. Methods Biochem. Anal. 44, 273–303 (2003).

    CAS  PubMed  Google Scholar 

  28. DeLano, W.L. The PyMOL Molecular Graphics System (DeLano Scientific, San Carlos, California, USA, 2002).

    Google Scholar 

  29. Akopiants, K., Florova, G., Li, C. & Reynolds, K.A. Multiple pathways for acetate assimilation in Streptomyces cinnamonensis. J. Ind. Microbiol. Biotechnol. 33, 141–150 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We kindly thank D. O'Hagan (University of St. Andrews) for providing 5′-FDA and 5′-BrDA standards, B. Gust and Plant Bioscience Limited for the REDIRECT technology kit for PCR targeting, A. Lapidus (Joint Genome Institute) for fosmid BHXS3930 and R. McGlinchey for valuable discussions. A.S.E. is a Tularik postdoctoral fellow of the Life Sciences Research Foundation, and F.P. is a Deutsche Forschungsgemeinschaft postdoctoral fellow. This work was supported by grants from the US National Oceanic and Atmospheric Administration (NA05NOS4781249 to B.S.M.), the US National Institutes of Health (CA127622 to B.S.M.) and the US National Science Foundation (MCB-023602 to J.P.N.). J.P.N. is an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

A.S.E. and F.P. contributed equally to this paper. A.S.E. performed the genetic and biochemical experiments, F.P. and A.S.E. crystallized SalL, F.P. determined the structure and performed the sedimentation velocity studies. All authors discussed the results and wrote and commented on the manuscript.

Corresponding author

Correspondence to Bradley S Moore.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1 and Supplementary Table 1 (PDF 95 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Eustáquio, A., Pojer, F., Noel, J. et al. Discovery and characterization of a marine bacterial SAM-dependent chlorinase. Nat Chem Biol 4, 69–74 (2008). https://doi.org/10.1038/nchembio.2007.56

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2007.56

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing