Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dissecting metal ion–dependent folding and catalysis of a single DNAzyme

Abstract

Protein metalloenzymes use various modes for functions for which metal-dependent global conformational change is required in some cases but not in others. In contrast, most ribozymes require a global folding that almost always precedes enzyme reactions. Herein we studied metal-dependent folding and cleavage activity of the 8–17 DNAzyme using single-molecule fluorescence resonance energy transfer. Addition of Zn2+ and Mg2+ induced folding of the DNAzyme into a more compact structure followed by a cleavage reaction, which suggests that the DNAzyme may require metal-dependent global folding for activation. In the presence of Pb2+, however, the cleavage reaction occurred without a precedent folding step, which suggests that the DNAzyme may be prearranged to accept Pb2+ for the activity. Neither ligation reaction of the cleaved substrates nor dynamic changes between folded and unfolded states was observed. These features may contribute to the unusually fast Pb2+-dependent reaction of the DNAzyme. These results suggest that DNAzymes can use all modes of activation that metalloproteins use.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The proposed secondary structure of the 8–17 DNAzyme and its fluorophore attachments for the smFRET studies.
Figure 2: Zn2+-dependent conformational changes and cleavage reaction.
Figure 3: Mg2+-dependent conformational changes and cleavage reaction.
Figure 4: Pb2+-dependent conformational changes and cleavage reaction.

Similar content being viewed by others

References

  1. Bren, K.L., Pecoraro, V.L. & Gray, H.B. Metalloprotein folding. Inorg. Chem. 43, 7894–7896 (2004).

    Article  CAS  Google Scholar 

  2. Kruger, K. et al. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31, 147–157 (1982).

    Article  CAS  Google Scholar 

  3. Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N. & Altman, S. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35, 849–857 (1983).

    Article  CAS  Google Scholar 

  4. Breaker, R.R. & Joyce, G.F.A. DNA enzyme that cleaves RNA. Chem. Biol. 1, 223–229 (1994).

    Article  CAS  Google Scholar 

  5. Sen, D. & Geyer, C.R. DNA enzymes. Curr. Opin. Chem. Biol. 2, 680–687 (1998).

    Article  CAS  Google Scholar 

  6. Li, Y. & Breaker, R.R. Deoxyribozymes: new players in the ancient game of biocatalysis. Curr. Opin. Struct. Biol. 9, 315–323 (1999).

    Article  CAS  Google Scholar 

  7. Lu, Y. New transition metal-dependent DNAzymes as efficient endonucleases and as selective metal biosensors. Chemistry 8, 4588–4596 (2002).

    Article  CAS  Google Scholar 

  8. Santoro, S.W. & Joyce, G.F. A general purpose RNA-cleaving DNA enzyme. Proc. Natl. Acad. Sci. USA 94, 4262–4266 (1997).

    Article  CAS  Google Scholar 

  9. Li, J. & Lu, Y. A highly sensitive and selective catalytic DNA biosensor for lead ions. J. Am. Chem. Soc. 122, 10466–10467 (2000).

    Article  CAS  Google Scholar 

  10. Liu, J. & Lu, Y. A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J. Am. Chem. Soc. 125, 6642–6643 (2003).

    Article  CAS  Google Scholar 

  11. Liu, J. & Lu, Y. Improving fluorescent DNAzyme biosensors by combining inter- and intramolecular quenchers. Anal. Chem. 75, 6666–6672 (2003).

    Article  CAS  Google Scholar 

  12. Lu, Y. & Liu, J. Functional DNA nanotechnology: emerging applications of DNAzymes and aptamers. Curr. Opin. Biotechnol. 17, 580–588 (2006).

    Article  CAS  Google Scholar 

  13. Lu, Y. & Liu, J. Smart nanomaterials inspired by biology: dynamic assembly of error-free nanomaterials in response to multiple chemical and biological stimuli. Acc. Chem. Res. 40, 315–323 (2007).

    Article  CAS  Google Scholar 

  14. Faulhammer, D. & Famulok, M. The Ca2+ ion as a cofactor for a novel RNA-cleaving deoxyribozyme. Angew. Chem. Int. Ed. 35, 2837–2841 (1996).

    Article  CAS  Google Scholar 

  15. Li, J., Zheng, W., Kwon, A.H. & Lu, Y. In vitro selection and characterization of a highly efficient Zn(ii)-dependent RNA-cleaving deoxyribozyme. Nucleic Acids Res. 28, 481–488 (2000).

    Article  CAS  Google Scholar 

  16. Cruz, R.P.G., Withers, J.B. & Li, Y. Dinucleotide junction cleavage versatility of 8–17 deoxyribozyme. Chem. Biol. 11, 57–67 (2004).

    Article  CAS  Google Scholar 

  17. Schlosser, K. & Li, Y. Tracing sequence diversity change of RNA-cleaving deoxyribozymes under increasing selection pressure during in vitro selection. Biochemistry 43, 9695–9707 (2004).

    Article  CAS  Google Scholar 

  18. Peracchi, A. Preferential activation of the 8–17 deoxyribozyme by Ca2+ ions. Evidence for the identity of 8–17 with the catalytic domain of the MG5 deoxyribozyme. J. Biol. Chem. 275, 11693–11697 (2000).

    Article  CAS  Google Scholar 

  19. Brown, A.K., Li, J., Pavot, C.M.B. & Lu, Y.A. Lead-dependent DNAzyme with a two-step mechanism. Biochemistry 42, 7152–7161 (2003).

    Article  CAS  Google Scholar 

  20. Xiao, Y., Rowe, A.A. & Plaxco, K.W. Electrochemical detection of parts-per-billion lead via an electrode-bound DNAzyme assembly. J. Am. Chem. Soc. 129, 262–263 (2007).

    Article  CAS  Google Scholar 

  21. Clegg, R.M. Fluorescence resonance energy transfer and nucleic acids. Methods Enzymol. 211, 353–388 (1992).

    Article  CAS  Google Scholar 

  22. Lilley, D.M.J. & Wilson, T.J. Fluorescence resonance energy transfer as a structural tool for nucleic acids. Curr. Opin. Chem. Biol. 4, 507–517 (2000).

    Article  CAS  Google Scholar 

  23. Bassi, G.S., Murchie, A.I.H., Walter, F., Clegg, R.M. & Lilley, D.M.J. Ion-induced folding of the hammerhead ribozyme: a fluorescence resonance energy transfer study. EMBO J. 16, 7481–7489 (1997).

    Article  CAS  Google Scholar 

  24. Walter, N.G., Burke, J.M. & Millar, D.P. Stability of hairpin ribozyme tertiary structure is governed by the interdomain junction. Nat. Struct. Biol. 6, 544–549 (1999).

    Article  CAS  Google Scholar 

  25. Fang, X.-W., Pan, T. & Sosnick, T.R. Mg2+-dependent folding of a large ribozyme without kinetic traps. Nat. Struct. Biol. 6, 1091–1095 (1999).

    Article  CAS  Google Scholar 

  26. Wilson, T.J. & Lilley, D.M.J. Metal ion binding and the folding of the hairpin ribozyme. RNA 8, 587–600 (2002).

    Article  CAS  Google Scholar 

  27. Kim, H.-K. et al. Metal-dependent global folding and activity of the 8–17 DNAzyme studied by fluorescence resonance energy transfer. J. Am. Chem. Soc. 129, 6896–6902 (2007).

    Article  CAS  Google Scholar 

  28. Nahas, M.K. et al. Observation of internal cleavage and ligation reactions of a ribozyme. Nat. Struct. Mol. Biol. 11, 1107–1113 (2004).

    Article  CAS  Google Scholar 

  29. Ha, T. et al. Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc. Natl. Acad. Sci. USA 93, 6264–6268 (1996).

    Article  CAS  Google Scholar 

  30. Myong, S., Stevens, B.C. & Ha, T. Bridging conformational dynamics and function using single-molecule spectroscopy. Structure 14, 633–643 (2006).

    Article  CAS  Google Scholar 

  31. Zhuang, X. et al. Correlating structural dynamics and function in single ribozyme molecules. Science 296, 1473–1476 (2002).

    Article  CAS  Google Scholar 

  32. Tan, E. et al. A four-way junction accelerates hairpin ribozyme folding via a discrete intermediate. Proc. Natl. Acad. Sci. USA 100, 9308–9313 (2003).

    Article  CAS  Google Scholar 

  33. Bokinsky, G. et al. Single-molecule transition-state analysis of RNA folding. Proc. Natl. Acad. Sci. USA 100, 9302–9307 (2003).

    Article  CAS  Google Scholar 

  34. Zhuang, X. et al. A single-molecule study of RNA catalysis and folding. Science 288, 2048–2051 (2000).

    Article  CAS  Google Scholar 

  35. Roychowdhury-Saha, M. & Burke, D.H. Distinct reaction pathway promoted by non-divalent-metal cations in a tertiary stabilized hammerhead ribozyme. RNA 13, 841–848 (2007).

    Article  CAS  Google Scholar 

  36. Hampel, K.J. & Tinsley, M.M. Evidence for preorganization of the glmS ribozyme ligand binding pocket. Biochemistry 45, 7861–7871 (2006).

    Article  CAS  Google Scholar 

  37. Cochrane, J.C., Lipchock, S.V. & Strobel, S.A. Structural investigation of the GlmS ribozyme bound to its catalytic cofactor. Chem. Biol. 14, 97–105 (2007).

    Article  CAS  Google Scholar 

  38. Hohng, S. et al. Conformational flexibility of four-way junctions in RNA. J. Mol. Biol. 336, 69–79 (2004).

    Article  CAS  Google Scholar 

  39. Rasnik, I., McKinney, S.A. & Ha, T. Nonblinking and long-lasting single-molecule fluorescence imaging. Nat. Methods 3, 891–893 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Joo and R. Roy for generous help with performing experiments and data analysis, and J.H. Lee for help with drawing the graphical abstract. This material is based on work supported by the US Department of Energy (DEFG02–01–ER63179), the US National Institutes of Health (GM065367) and the US National Science Foundation (CTS–0120978 and DMI- 0328162). T.H. is a Howard Hughes Medical Institute Investigator.

Author information

Authors and Affiliations

Authors

Contributions

H.-K.K. designed and carried out all the experiments and wrote the manuscript; I.R. designed and carried out smFRET experiments; J.L. designed smFRET experiments; T.H. designed smFRET experiments and wrote the manuscript; Y.L. designed all the experiments and wrote the manuscript.

Corresponding authors

Correspondence to Taekjip Ha or Yi Lu.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 275 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, HK., Rasnik, I., Liu, J. et al. Dissecting metal ion–dependent folding and catalysis of a single DNAzyme. Nat Chem Biol 3, 763–768 (2007). https://doi.org/10.1038/nchembio.2007.45

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2007.45

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing