Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Transgenic or tumor-induced expression of heparanase upregulates sulfation of heparan sulfate

Abstract

Heparan sulfate proteoglycans (HSPGs) interact with numerous proteins of importance in animal development and homeostasis1,2,3. Heparanase, which is expressed in normal tissues and upregulated in angiogenesis, cancer and inflammation, selectively cleaves β-glucuronidic linkages in HS chains. In a previous study, we transgenically overexpressed heparanase in mice to assess the overall effects of heparanase on HS metabolism. Metabolic labeling confirmed extensive fragmentation of HS in vivo4,5. In the current study we found that in liver showing excessive heparanase overexpression, HSPG turnover is accelerated along with upregulation of HS N- and O-sulfation, thus yielding heparin-like chains without the domain structure typical of HS. Heparanase overexpression in other mouse organs and in human tumors correlated with increased 6-O-sulfation of HS, whereas the domain structure was conserved. The heavily sulfated HS fragments strongly promoted formation of ternary complexes with fibroblast growth factor 1 (FGF1) or FGF2 and FGF receptor 1. Heparanase thus contributes to regulation of HS biosynthesis in a way that may promote growth factor action in tumor angiogenesis and metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural analysis of liver HS.
Figure 2: Assessment of liver HSPG turnover.
Figure 3: Localization of heparanase in liver tissue and hepatocytes.
Figure 4: Interactions of HS with FGFs and their receptor.

Similar content being viewed by others

References

  1. Bernfield, M. et al. Functions of cell surface heparan sulfate proteoglycans. Annu. Rev. Biochem. 68, 72–777 (1999).

    Article  Google Scholar 

  2. Lin, X. & Perrimon, N. Role of heparan sulfate proteoglycans in cell-cell signaling in Drosophila. Matrix Biol. 19, 303–307 (2000).

    Article  Google Scholar 

  3. Bishop, J.R., Schuksz, M. & Esko, J.D. Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 446, 1030–1037 (2007).

    Article  CAS  Google Scholar 

  4. Zcharia, E. et al. Transgenic expression of mammalian heparanase uncovers physiological functions of heparan sulfate in tissue morphogenesis, vascularization, and feeding behavior. FASEB J. 18, 252–263 (2004).

    Article  CAS  Google Scholar 

  5. Li, J.P. et al. In vivo fragmentation of heparan sulfate by heparanase overexpression renders mice resistant to amyloid protein A amyloidosis. Proc. Natl. Acad. Sci. USA 102, 6473–6477 (2005).

    Article  CAS  Google Scholar 

  6. Casu, B. & Lindahl, U. Structure and biological interactions of heparin and heparan sulfate. Adv. Carbohydr. Chem. Biochem. 57, 159–206 (2001).

    Article  CAS  Google Scholar 

  7. Feyerabend, T.B., Li, J.P., Lindahl, U. & Rodewald, H.R. Heparan sulfate C5-epimerase is essential for heparin biosynthesis in mast cells. Nat. Chem. Biol. 2, 195–196 (2006).

    Article  CAS  Google Scholar 

  8. Maccarana, M., Sakura, Y., Tawada, A., Yoshida, K. & Lindahl, U. Domain structure of heparan sulfates from bovine organs. J. Biol. Chem. 271, 17804–17810 (1996).

    Article  CAS  Google Scholar 

  9. Stringer, S.E. & Gallagher, J.T. Molecules in focus: heparan sulphate. Int. J. Biochem. Cell Biol. 29, 709–714 (1997).

    Article  CAS  Google Scholar 

  10. Ledin, J. et al. Heparan sulfate structure in mice with genetically modified heparan sulfate production. J. Biol. Chem. 279, 42732–42741 (2004).

    Article  CAS  Google Scholar 

  11. Ögren, S. & Lindahl, U. Cleavage of macromolecular heparin by an enzyme from mouse mastocytoma. J. Biol. Chem. 250, 2690–2697 (1975).

    PubMed  Google Scholar 

  12. Gong, F. et al. Processing of macromolecular heparin by heparanase. J. Biol. Chem. 278, 35152–35158 (2003).

    Article  CAS  Google Scholar 

  13. Ilan, N., Elkin, M. & Vlodavsky, I. Regulation, function and clinical significance of heparanase in cancer metastasis and angiogenesis. Int. J. Biochem. Cell Biol. 38, 2018–2039 (2006).

    Article  CAS  Google Scholar 

  14. Zetser, A. et al. Processing and activation of latent heparanase occurs in lysosomes. J. Cell Sci. 117, 2249–2258 (2004).

    Article  CAS  Google Scholar 

  15. Guo, Y. & Conrad, H.E. The disaccharide composition of heparins and heparan sulfates. Anal. Biochem. 176, 96–104 (1989).

    Article  CAS  Google Scholar 

  16. Pinhal, M.A. et al. Enzyme interactions in heparan sulfate biosynthesis: uronosyl 5-epimerase and 2-O-sulfotransferase interact in vivo. Proc. Natl. Acad. Sci. USA 98, 12984–12989 (2001).

    Article  CAS  Google Scholar 

  17. Kurup, S. et al. Characterization of anti-heparan sulfate phage-display antibodies AO4B08 and HS4E4. J. Biol. Chem. 282, 21032–21042 (2007).

    Article  CAS  Google Scholar 

  18. Jayson, G.C. et al. Heparan sulfate undergoes specific structural changes during the progression from human colon adenoma to carcinoma in vitro. J. Biol. Chem. 273, 51–57 (1998).

    Article  CAS  Google Scholar 

  19. Vlodavsky, I. et al. Mammalian heparanase: gene cloning, expression and function in tumor progression and metastasis. Nat. Med. 5, 793–802 (1999).

    Article  CAS  Google Scholar 

  20. Friedmann, Y. et al. Expression of heparanase in normal, dysplastic, and neoplastic human colonic mucosa and stroma. Evidence for its role in colonic tumorigenesis. Am. J. Pathol. 157, 1167–1175 (2000).

    Article  CAS  Google Scholar 

  21. Jastrebova, N. et al. Heparan sulfate-related oligosaccharides in ternary complex formation with fibroblast growth factors 1 and 2 and their receptors. J. Biol. Chem. 281, 26884–26892 (2006).

    Article  CAS  Google Scholar 

  22. Kreuger, J., Spillmann, D., Li, J.P. & Lindahl, U. Interactions between heparan sulfate and proteins: the concept of specificity. J. Cell Biol. 174, 323–327 (2006).

    Article  CAS  Google Scholar 

  23. Jakobsson, L. et al. Heparan sulfate in trans potentiates VEGFR-mediated angiogenesis. Dev. Cell 10, 625–634 (2006).

    Article  CAS  Google Scholar 

  24. Guimond, S., Maccarana, M., Olwin, B.B., Lindahl, U. & Rapraeger, A.C. Activating and inhibitory heparin sequences for FGF-2 (basic FGF). Distinct requirements for FGF-1, FGF-2, and FGF-4. J. Biol. Chem. 268, 23906–23914 (1993).

    CAS  PubMed  Google Scholar 

  25. Reiland, J., Kempf, D., Roy, M., Denkins, Y. & Marchetti, D. FGF2 binding, signaling, and angiogenesis are modulated by heparanase in metastatic melanoma cells. Neoplasia 8, 596–606 (2006).

    Article  CAS  Google Scholar 

  26. Gingis-Velitski, S., Ishai-Michaeli, R., Vlodavsky, I. & Ilan, N. Anti-heparanase monoclonal antibody enhances heparanase enzymatic activity and facilitates wound healing. FASEB J. (in the press).

  27. Höök, M., Riesenfeld, J. & Lindahl, U. N-[3H]Acetyl-labeling, a convenient method for radiolabeling of glycosaminoglycans. Anal. Biochem. 119, 236–245 (1982).

    Article  Google Scholar 

  28. Blumenkrantz, N. & Asboe-Hansen, G. New method for quantitative determination of uronic acids. Anal. Biochem. 54, 484–489 (1973).

    Article  CAS  Google Scholar 

  29. Pikas, D.S., Li, J.P., Vlodavsky, I. & Lindahl, U. Substrate specificity of heparanases from human hepatoma and platelets. J. Biol. Chem. 273, 18770–18777 (1998).

    Article  CAS  Google Scholar 

  30. Maccarana, M. & Lindahl, U. Mode of interaction between platelet factor 4 and heparin. Glycobiology 3, 271–277 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Nylund for expert technical assistance. This work was supported by the Swedish Research Council (32X-15023), the Swedish Cancer Society (4708-B02-01XAA), the Swedish Foundation for Strategic Research (A303:156e), the European Commission (QLK3-CT-2002-02049) and Polysackaridforskning AB (Uppsala, Sweden).

Author information

Authors and Affiliations

Authors

Contributions

M.L.E.G., J.J., X.Z., N.J., D.S. and E.G. performed the experiments; T.H.v.K., E.Z. and I.V. provided reagents and specimens; U.L. and J.-P.L. designed experiments and prepared the manuscript.

Corresponding author

Correspondence to Jin-Ping Li.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Tables 1 and 2, and Supplementary Methods (PDF 2603 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Escobar Galvis, M., Jia, J., Zhang, X. et al. Transgenic or tumor-induced expression of heparanase upregulates sulfation of heparan sulfate. Nat Chem Biol 3, 773–778 (2007). https://doi.org/10.1038/nchembio.2007.41

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2007.41

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing