Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Noninvasive optical imaging of cysteine protease activity using fluorescently quenched activity-based probes

Abstract

We have generated a series of quenched near-infrared fluorescent activity-based probes (qNIRF-ABPs) that covalently target the papain-family cysteine proteases shown previously to be important in multiple stages of tumorigenesis. These 'smart' probes emit a fluorescent signal only after covalently modifying a specific protease target. After intravenous injection of NIRF-ABPs into mice bearing grafted tumors, noninvasive, whole-body imaging allowed direct monitoring of cathepsin activity. Importantly, the permanent nature of the probes also allowed secondary, ex vivo biochemical profiling to identify specific proteases and to correlate their activity with whole-body images. Finally, we demonstrate that these probes can be used to monitor small-molecule inhibition of protease targets both biochemically and by direct imaging methods. Thus, NIRF-ABPs are (i) potentially valuable new imaging agents for disease diagnosis and (ii) powerful tools for preclinical and clinical testing of small-molecule therapeutic agents in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures and serum sensitivity of the NIRF-ABPs.
Figure 2: Optical imaging of tumors in live mice using nonquenched NIRF-ABPs.
Figure 3: Biochemical characterization of in vivo–labeled proteases.
Figure 4: Direct comparison of the nonquenched and quenched NIRF-ABPs GB123 and GB137.
Figure 5: Imaging of small-molecule inhibitor efficacy.

Similar content being viewed by others

References

  1. Berger, A.B., Vitorino, P.M. & Bogyo, M. Activity-based protein profiling: applications to biomarker discovery, in vivo imaging and drug discovery. Am. J. Pharmacogenomics 4, 371–381 (2004).

    Article  CAS  Google Scholar 

  2. Evans, M.J. & Cravatt, B.F. Mechanism-based profiling of enzyme families. Chem. Rev. 106, 3279–3301 (2006).

    Article  CAS  Google Scholar 

  3. Sadaghiani, A.M., Verhelst, S.H. & Bogyo, M. Tagging and detection strategies for activity-based proteomics. Curr. Opin. Chem. Biol. 11, 20–28 (2006).

    Article  Google Scholar 

  4. Saghatelian, A. & Cravatt, B.F. Assignment of protein function in the postgenomic era. Nat. Chem. Biol. 1, 130–142 (2005).

    Article  CAS  Google Scholar 

  5. Schmidinger, H., Hermetter, A. & Birner-Gruenberger, R. Activity-based proteomics: enzymatic activity profiling in complex proteomes. Amino Acids 30, 333–350 (2006).

    Article  CAS  Google Scholar 

  6. Greenbaum, D. et al. Chemical approaches for functionally probing the proteome. Mol. Cell. Proteomics 1, 60–68 (2002).

    Article  CAS  Google Scholar 

  7. Patricelli, M.P., Giang, D.K., Stamp, L.M. & Burbaum, J.J. Direct visualization of serine hydrolase activities in complex proteomes using fluorescent active site-directed probes. Proteomics 1, 1067–1071 (2001).

    Article  CAS  Google Scholar 

  8. Saghatelian, A., Jessani, N., Joseph, A., Humphrey, M. & Cravatt, B.F. Activity-based probes for the proteomic profiling of metalloproteases. Proc. Natl. Acad. Sci. USA 101, 10000–10005 (2004).

    Article  CAS  Google Scholar 

  9. Sieber, S.A., Niessen, S., Hoover, H.S. & Cravatt, B.F. Proteomic profiling of metalloprotease activities with cocktails of active-site probes. Nat. Chem. Biol. 2, 274–281 (2006).

    Article  CAS  Google Scholar 

  10. Lecaille, F., Kaleta, J. & Bromme, D. Human and parasitic papain-like cysteine proteases: their role in physiology and pathology and recent developments in inhibitor design. Chem. Rev. 102, 4459–4488 (2002).

    Article  CAS  Google Scholar 

  11. Mueller-Steiner, S. et al. Antiamyloidogenic and neuroprotective functions of cathepsin B: implications for Alzheimer's disease. Neuron 51, 703–714 (2006).

    Article  CAS  Google Scholar 

  12. Jedeszko, C. & Sloane, B.F. Cysteine cathepsins in human cancer. Biol. Chem. 385, 1017–1027 (2004).

    Article  CAS  Google Scholar 

  13. Mohamed, M.M. & Sloane, B.F. Cysteine cathepsins: multifunctional enzymes in cancer. Nat. Rev. Cancer 6, 764–775 (2006).

    Article  CAS  Google Scholar 

  14. Foekens, J.A. et al. Prognostic significance of cathepsins B and L in primary human breast cancer. J. Clin. Oncol. 16, 1013–1021 (1998).

    Article  CAS  Google Scholar 

  15. Harbeck, N. et al. Prognostic impact of proteolytic factors (urokinase-type plasminogen activator, plasminogen activator inhibitor 1, and cathepsins B, D, and L) in primary breast cancer reflects effects of adjuvant systemic therapy. Clin. Cancer Res. 7, 2757–2764 (2001).

    CAS  PubMed  Google Scholar 

  16. Jagodic, M., Vrhovec, I., Borstnar, S. & Cufer, T. Prognostic and predictive value of cathepsins D and L in operable breast cancer patients. Neoplasma 52, 1–9 (2005).

    CAS  PubMed  Google Scholar 

  17. Lah, T.T. et al. Cathepsin B, a prognostic indicator in lymph node-negative breast carcinoma patients: comparison with cathepsin D, cathepsin L, and other clinical indicators. Clin. Cancer Res. 6, 578–584 (2000).

    CAS  PubMed  Google Scholar 

  18. Gocheva, V. et al. Distinct roles for cysteine cathepsin genes in multistage tumorigenesis. Genes Dev. 20, 543–556 (2006).

    Article  CAS  Google Scholar 

  19. Joyce, J.A. et al. Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis. Cancer Cell 5, 443–453 (2004).

    Article  CAS  Google Scholar 

  20. Urbich, C. et al. Cathepsin L is required for endothelial progenitor cell-induced neovascularization. Nat. Med. 11, 206–213 (2005).

    Article  CAS  Google Scholar 

  21. Vasiljeva, O. et al. Tumor cell-derived and macrophage-derived cathepsin B promotes progression and lung metastasis of mammary cancer. Cancer Res. 66, 5242–5250 (2006).

    Article  CAS  Google Scholar 

  22. Choy, G., Choyke, P. & Libutti, S.K. Current advances in molecular imaging: noninvasive in vivo bioluminescent and fluorescent optical imaging in cancer research. Mol. Imaging 2, 303–312 (2003).

    Article  CAS  Google Scholar 

  23. Licha, K. & Olbrich, C. Optical imaging in drug discovery and diagnostic applications. Adv. Drug Deliv. Rev. 57, 1087–1108 (2005).

    Article  CAS  Google Scholar 

  24. Shah, K. & Weissleder, R. Molecular optical imaging: applications leading to the development of present day therapeutics. NeuroRx 2, 215–225 (2005).

    Article  Google Scholar 

  25. Baruch, A., Jeffery, D.A. & Bogyo, M. Enzyme activity–it's all about image. Trends Cell Biol. 14, 29–35 (2004).

    Article  CAS  Google Scholar 

  26. Bremer, C. et al. Optical imaging of spontaneous breast tumors using protease sensing 'smart' optical probes. Invest. Radiol. 40, 321–327 (2005).

    Article  CAS  Google Scholar 

  27. Jiang, T. et al. Tumor imaging by means of proteolytic activation of cell-penetrating peptides. Proc. Natl. Acad. Sci. USA 101, 17867–17872 (2004).

    Article  CAS  Google Scholar 

  28. Tung, C.H., Mahmood, U., Bredow, S. & Weissleder, R. In vivo imaging of proteolytic enzyme activity using a novel molecular reporter. Cancer Res. 60, 4953–4958 (2000).

    CAS  PubMed  Google Scholar 

  29. Weissleder, R., Tung, C.H., Mahmood, U. & Bogdanov, A., Jr In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat. Biotechnol. 17, 375–378 (1999).

    Article  CAS  Google Scholar 

  30. Blum, G. et al. Dynamic imaging of protease activity with fluorescently quenched activity-based probes. Nat. Chem. Biol. 1, 203–209 (2005).

    Article  CAS  Google Scholar 

  31. Ledakis, P. et al. Cathepsins D, B, and L in malignant human lung tissue. Clin. Cancer Res. 2, 561–568 (1996).

    CAS  PubMed  Google Scholar 

  32. D'Orazi, G. et al. Exogenous wt-p53 protein is active in transformed cells but not in their non-transformed counterparts: implications for cancer gene therapy without tumor targeting. J. Gene Med. 2, 11–21 (2000).

    Article  CAS  Google Scholar 

  33. Jessani, N., Niessen, S., Mueller, B.M. & Cravatt, B.F. Breast cancer cell lines grown in vivo: what goes in isn't always the same as what comes out. Cell Cycle 4, 253–255 (2005).

    Article  CAS  Google Scholar 

  34. Bogyo, M., Verhelst, S., Bellingard-Dubouchaud, V., Toba, S. & Greenbaum, D. Selective targeting of lysosomal cysteine proteases with radiolabeled electrophilic substrate analogs. Chem. Biol. 7, 27–38 (2000).

    Article  CAS  Google Scholar 

  35. Palmer, J.T., Rasnick, D., Klaus, J.L. & Bromme, D. Vinyl sulfones as mechanism-based cysteine protease inhibitors. J. Med. Chem. 38, 3193–3196 (1995).

    Article  CAS  Google Scholar 

  36. Smith, S.M., Kane, S.E., Gal, S., Mason, R.W. & Gottesman, M.M. Glycosylation of procathepsin L does not account for species molecular-mass differences and is not required for proteolytic activity. Biochem. J. 262, 931–938 (1989).

    Article  CAS  Google Scholar 

  37. Coombs, G.S. et al. Substrate specificity of prostate-specific antigen (PSA). Chem. Biol. 5, 475–488 (1998).

    Article  CAS  Google Scholar 

  38. Liu, S., Bugge, T.H. & Leppla, S.H. Targeting of tumor cells by cell surface urokinase plasminogen activator-dependent anthrax toxin. J. Biol. Chem. 276, 17976–17984 (2001).

    Article  CAS  Google Scholar 

  39. Kato, D. et al. Activity-based probes that target diverse cysteine protease families. Nat. Chem. Biol. 1, 33–38 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Doyle and S. Keren from the Stanford Small Animal Imaging Facility and T. Troy from Caliper Life Sciences for expert advice and technical assistance. We thank K.B. Sexton and S. Verhelst for valuable discussions and technical assistance. The authors thank C. Gilon for helpful advice on peptide synthesis. We thank P. Jackson (Stanford University) for the mouse fibroblast cells, G.P. Nolan (Stanford University) for the ecotropic ΦNX packaging cell line, S. Gambhir (Stanford University) for the U87MG cells, X. Chen (Stanford University) for the MDA-MB 435 human epithelial adenocarcinoma cells, and B. Cravatt (The Scripps Research Institute) for the MDA-MB 231 MFP human epithelial adenocarcinoma. This work was supported by the US National Institutes of Health National Technology Center for Networks and Pathways (grants U54 RR020843, R01 EB005011 and P01 CA072006), the US Department of Defense Breast Cancer Center of Excellence (grant DAMD-17-02-0693; to M.B.), a Susan G. Komen postdoctoral fellowship (to G.B.) and a grant from the Deutsche Forschungsgemeinschaft (DE 740/1-1; to G.v.D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Bogyo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3, Supplementary Methods (PDF 3221 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blum, G., von Degenfeld, G., Merchant, M. et al. Noninvasive optical imaging of cysteine protease activity using fluorescently quenched activity-based probes. Nat Chem Biol 3, 668–677 (2007). https://doi.org/10.1038/nchembio.2007.26

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2007.26

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing