Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural and mechanistic basis of penicillin-binding protein inhibition by lactivicins

Abstract

β-lactam antibiotics, including penicillins and cephalosporins, inhibit penicillin-binding proteins (PBPs), which are essential for bacterial cell wall biogenesis. Pathogenic bacteria have evolved efficient antibiotic resistance mechanisms that, in Gram-positive bacteria, include mutations to PBPs that enable them to avoid β-lactam inhibition1. Lactivicin (LTV; 1) contains separate cycloserine and γ-lactone rings and is the only known natural PBP inhibitor that does not contain a β-lactam2,3,4. Here we show that LTV and a more potent analog, phenoxyacetyl-LTV (PLTV; 2), are active against clinically isolated, penicillin-resistant Streptococcus pneumoniae strains. Crystallographic analyses of S. pneumoniae PBP1b reveal that LTV and PLTV inhibition involves opening of both monocyclic cycloserine and γ-lactone rings. In PBP1b complexes, the ring-derived atoms from LTV and PLTV show a notable structural convergence with those derived from a complexed cephalosporin (cefotaxime; 3). The structures imply that derivatives of LTV will be useful in the search for new antibiotics with activity against β-lactam–resistant bacteria.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures and mechanisms of action of β-lactams and lactivicins.
Figure 2: Kinetic and microbiological analyses of LTV and PLTV activity.
Figure 3: Stereoviews from crystal structures of the PBP1b*-LTV and PBP1b*-PLTV complexes.
Figure 4: Stereoview overlay of the active site complexes of PBP1b*-cefotaxime, PBP1b*-LTV and PBP1b*-PLTV.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Macheboeuf, P., Contreras-Martel, C., Job, V., Dideberg, O. & Dessen, A. Penicillin Binding Proteins: Key players in bacterial cell cycle and drug resistance processes. FEMS Microbiol. Rev. 30, 673–691 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Nozaki, Y. et al. Binding of a non-β-lactam antibiotic to penicillin-binding proteins. Nature 325, 179–180 (1987).

    Article  CAS  PubMed  Google Scholar 

  3. Nozaki, Y., Katayama, N., Harada, S., Ono, H. & Okazaki, H. Lactivicin, a naturally occuring non-β-lactam antibiotic having β-lactam-like action: Biological activities and mode of action. J. Antibiot. (Tokyo) 42, 84–93 (1989).

    Article  CAS  Google Scholar 

  4. Harada, S. et al. Structure of lactivicin, an antibiotic having a new nucleus and similar biological activities to β-lactam antibiotics. Tetrahedr. Lett. 27, 6229–6232 (1986).

    Article  CAS  Google Scholar 

  5. Schuchat, A. et al. Bacterial meningitis in the United States in 1995. Active Surveillance Team. N. Engl. J. Med. 337, 970–976 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Bronzwaer, S.L. et al. A European study on the relationship between antimicrobial use and antimicrobial resistance. Emerg. Infect. Dis. 8, 278–282 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Page, M.I. The Chemistry of β-Lactams (ed. Page, M.I.) (Blackie, Glasgow, 1992).

  8. Harada, S. et al. Chemistry of a new antibiotic: Lactivicin. Tetrahedron 44, 6589–6606 (1988).

    Article  CAS  Google Scholar 

  9. Inui, T., Oshida, T., Endo, T. & Matsushita, T. Potent bacteriolytic activity of ritipenem associated with a characteristic profile of affinities for penicillin-binding proteins of Haemophilus influenzae. Antimicrob. Agents Chemother. 43, 2534–2537 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hakenbeck, R. et al. Penicillin-binding proteins in beta-lactam-resistant Streptococcus pneumoniae. Microb. Drug Resist. 5, 91–99 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Chesnel, L. et al. The structural modifications induced by the M339F substitution in PBP2x from Streptococcus pneumoniae further decreases the susceptibility to β-lactams of resistant strains. J. Biol. Chem. 278, 44448–44456 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Macheboeuf, P. et al. Active site restructuring regulates ligand recognition in class A penicillin-binding proteins. Proc. Natl. Acad. Sci. USA 102, 577–582 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Imming, P., Klar, B. & Dix, D. Hydrolytic stability versus ring size in lactams: Implications for the development of lactam antibiotics and other serine protease inhibitors. J. Med. Chem. 43, 4328–4331 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Wilmouth, R.C. et al. Mechanistic insights into the inhibition of serine proteases by monocyclic lactams. Biochemistry 38, 7989–7998 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Brown, R.P.A., Aplin, R.T. & Schofield, C.J. Inhibition of TEM-2 β-lactamase from Escherichia coli by clavulanic acid: Observation of intermediates by electrospray ionization mass spectrometry. Biochemistry 35, 12421–12432 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Imtiaz, U. et al. Inactivation of class-A β-lactamases by clavulanic acid—the role of arginine-244 in a proposed nonconcerted sequence of events. J. Am. Chem. Soc. 115, 4435–4442 (1993).

    Article  CAS  Google Scholar 

  17. Llinás, A. et al. Inactivation of bacterial DD-peptidase by β-sultams. Biochemistry 44, 7738–7746 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Lakaye, B. et al. Synthesis, purification and kinetic properties of fluorescein-labelled penicillins. Biochem. J. 300, 141–145 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Carapito, R., Chesnel, L., Vernet, T. & Zapun, A. Pneumococcal β-lactam resistance due to a conformational change in penicillin-binding protein 2x. J. Biol. Chem. 281, 1771–1777 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Natsugari, H., Kawano, Y., Morimoto, A. & Yoshioka, K. Antibiotic 2-(3-oxo-2-isoxazolidinyl)-5-oxo-2-tetrahydrofuran-carboxylates. US Patent 4,851,422 (1989).

  21. Ghuysen, J.M., Frère, J.M., Leyh-Bouille, M., Nguyen-Disteche, M. & Coyette, J. Active-site-serine D-alanyl-D-alanine-cleaving-peptidase-catalysed acyl-transfer reactions. Procedures for studying the penicillin-binding proteins of bacterial plasma membranes. Biochem. J. 235, 159–165 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Adam, M., Damblon, C., Plaitin, B., Christiaens, L. & Frère, J.M. Chromogenic depsipeptide substrates for beta-lactamases and penicillin-sensitive DD-peptidases. Biochem. J. 270, 525–529 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. De Meester, F. et al. Automated analysis of enzyme inactivation phenomena. Application to beta-lactamases and DD-peptidases. Biochem. Pharmacol. 36, 2393–2403 (1987).

    Article  CAS  PubMed  Google Scholar 

  24. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Cryst. 26, 795–800 (1993).

    Article  CAS  Google Scholar 

  25. Navaza, J. Implementation of molecular replacement in AMoRe. Acta Crystallogr. Sect. D Biol. Crystallogr. 57, 1367–1372 (2001).

    Article  CAS  Google Scholar 

  26. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. Sect. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  CAS  Google Scholar 

  27. Collaborative Computational Project 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. Sect. D Biol. Crystallogr. 50, 760–763 (1994).

  28. Brünger, A. Crystallography & NMR system: A new software for macromolecular structure determination. Acta Crystallogr. Sect. D. Biol. Crystallogr. 54, 905–921 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the ESRF ID14 and ID23 beamline staff for help with data collection, D. Lemaire (IBS) for mass spectrometric assays, J. Croizé (Hopital Universitaire de Grenoble) for drug-resistant pneumococcal strains, R. Carapito for the purification of PBP2x (5204) and O. Dideberg for support. We thank J.M. Frère (ULG) for useful discussions. The work was funded by the European Commission LSHM-CT-2004-512138 (EUR-INTAFAR).

Author information

Authors and Affiliations

Authors

Contributions

P.M. and A.D. carried out the crystallographic analyses; D.S.F. and T.B. Jr. carried out the synthetic studies; A.Z., A.L., P.M. and B.J. carried out microbiological and kinetic analyses; A.D., D.S.F. and C.J.S. designed the study, analyzed data and, together with the other authors, wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Andréa Dessen or Christopher J Schofield.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figure1, Supplementary Table1 and Supplementary Methods (PDF 261 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macheboeuf, P., Fischer, D., Brown, T. et al. Structural and mechanistic basis of penicillin-binding protein inhibition by lactivicins. Nat Chem Biol 3, 565–569 (2007). https://doi.org/10.1038/nchembio.2007.21

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2007.21

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing