Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Synthesis and evaluation of stimulatory properties of Sphingomonadaceae glycolipids

Abstract

Glycosphingolipids (GSLs) from the Sphingomonadaceae family of bacteria have been reported to be potent stimulators of natural killer T cells. These glycolipids include mono-, tri- and tetraglycosylceramides. Here we have prepared the GSL-1 to GSL-4 series of glycolipids and tested their abilities to stimulate natural killer T cells. Among these glycolipids, only GSL-1 (1) is a potent stimulator. Using a series of synthetic diglycosylceramides, we show that oligoglycosylceramides from Sphingomonadaceae are not effectively truncated to GSL-1 in lysosomes in antigen-presenting cells, possibly because the higher-order GSLs are poor substrates for lysosomal acyltransfer enzymes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures of potential NKT-cell agonists.
Figure 2: Only GSL-1 and PBS57 cause significant stimulation of NKT cells.
Figure 3: GlcNAc from α-GlcNAc-(1-4)-α-GalCer is truncated by lysomal processing to generate a stimulatory glycolipid.

Similar content being viewed by others

References

  1. Miller, S.I., Ernst, R.K. & Bader, M.W. LPS, TLR4 and infectious disease diversity. Nat. Rev. Microbiol. 3, 36–46 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Kawahara, K., Kuraishi, H. & Zähringer, U. Chemical structure and function of glycosphingolipids of Sphingomonas spp. and their distribution among members of the α-4 subclass of Proteobacteria. J. Ind. Microbiol. Biotechnol. 23, 408–413 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Amano, K. et al. Deficiency of peptidoglycan and lipopolysaccharide components in Rickettsia tsutsugamushi. Infect. Immun. 55, 2290–2292 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lin, M. & Rikihisa, Y. Ehrlichia chaffeensis and Anaplasma phagocytophilum lack genes for lipid A biosynthesis and incorporate cholesterol for their survival. Infect. Immun. 71, 5324–5331 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Naka, T. et al. A novel sphingoglycolipid containing galacturonic acid and 2-hydroxy fatty acid in cellular lipids of Sphingomonas yanoikuyae. J. Bacteriol. 182, 2660–2663 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Selmi, C. et al. Patients with primary biliary cirrhosis react against a ubiquitous xenobiotic-metabolizing bacterium. Hepatology 38, 1250–1257 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Mattner, J. et al. Both exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 434, 525–528 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Kinjo, Y. et al. Recognition of bacterial glycosphingolipids by natural killer T cells. Nature 434, 520–525 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Sriram, V., Du, W., Gervay-Hague, J. & Brutkiewicz, R.R. Cell wall glycosphingolipids from Sphingomonas paucimobilis are CD1d-specific ligands for NKT cells. Eur. J. Immunol. 35, 1692–1701 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Bendelac, A., Savage, P.B. & Teyton, L. Biology of NKT cells. Annu. Rev. Immunol. 25, 297–336 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Yu, K.O.A. & Porcelli, S.A. The diverse functions of CD1d-restricted NKT cells and their potential for immunotherapy. Immunol. Lett. 100, 42–55 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Van Kaer, L. α-Galactosylceramide therapy for autoimmune diseases: prospects and obstacles. Nat. Rev. Immunol. 5, 31–42 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Morita, M. et al. Structure-activity relationship of α-galactosylceramides against B16-bearing mice. J. Med. Chem. 38, 2176–2187 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Fischer, K. et al. Mycobacterial phosphatidylinositol mannoside is a natural antigen for CD1d-restricted T cells. Proc. Natl. Acad. Sci. USA 101, 10685–10690 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Zhou, D. et al. Lysosomal glycosphingolipid recognition by NKT cells. Science 303, 523–527 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Kinjo, Y. et al. Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nat. Immunol. 7, 978–986 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Savage, P.B., Bendelac, A. & Teyton, L. Glycolipids for natural killer T cells. Chem. Soc. Rev. 35, 771–779 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Prigozy, T.I. et al. Glycolipid antigen processing for presentation by CD1d molecules. Science 291, 664–667 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Zhou, X.T. et al. Synthesis and NKT cell stimulating properties of fluorophore- and biotin-appended 6′′-amino-6′′-deoxy-galactosylceramides. Org. Lett. 4, 1267–1270 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Andersson, F., Fuegedi, P., Garegg, P. & Nashed, M. Synthesis of 1,2-cis-linked glycosides using dimethy(methylthio)sulfonium triflate as promoter and thioglycosides as glycosyl donors. Tetrahedr. Lett. 27, 3919–3922 (1986).

    Article  CAS  Google Scholar 

  21. Garcia, B.A., Poole, J.L. & Gin, D.Y. Direct glycosylations with 1-hydroxy glycosyl donors using trifluoromethanesulfonic anhydride and diphenyl sulfoxide. J. Am. Chem. Soc. 119, 7597–7598 (1997).

    Article  CAS  Google Scholar 

  22. Schmidt, R.R. & Michael, J. Einfache synthese von α- und β-O-glycosylimidaten. Herstellung von glykosiden und disacchariden. Angew. Chem. Int. Edn. Engl. 19, 731–732 (1980).

    Article  Google Scholar 

  23. Lee, P.T., Benlagha, K., Teyton, L. & Bendelac, A. Distinct functional lineages of human Vα-24 natural killer T cells. J. Exp. Med. 195, 637–641 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu, Y. et al. A modified α-galactosyl ceramide for staining and stimulating natural killer T cells. J. Immunol. Methods 312, 34–39 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Roces, D.P. et al. Efficacy of enzyme replacement therapy in α-mannosidosis mice: a preclinical animal study. Hum. Mol. Genet. 13, 1979–1988 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Lusis, A.J. & Paigen, K. Properties of mouse α-galactosidase. Biochim. Biophys. Acta 437, 487–497 (1976).

    Article  CAS  PubMed  Google Scholar 

  27. Meikle, P.J., Whittle, A.M. & Hopwood, J.J. Human acetyl-coenzyme A: α-glucosaminide N-acetyltransferase: kinetic characterization and mechanistic interpretation. Biochem. J. 308, 327–333 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhou, D. et al. Editing of Cd1-bound lipid antigens by endosomal lipid transfer proteins. Science 303, 523–527 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Sagiv, Y. et al. Cutting edge: impaired glycosphingolipids trafficking and NKT cell development in mice lacking Niemann-Pick type C1 protein. J. Immunol. 177, 26–30 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Zhao, H.G., Li, H.H., Bach, G., Schmidtchen, A. & Neufeld, E.F. The molecular basis of Sanfilippo syndrome type B. Proc. Natl. Acad. Sci. USA 93, 6101–6105 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the National Institutes of Health (NIAID AI053725). J.M. is a Cancer Research Institute fellow and was supported by a grant from the Lupus Research Institute. A.B. is a Howard Hughes Medical Institute Investigator.

Author information

Authors and Affiliations

Authors

Contributions

X.L., S.D., Z.Z. and R.D.G. synthesized glycolipids; J.M. and D.Z determined NKT cell stimulatory activity of glycolipids; N.M. isolated glycolipids; L.T., A.B. and P.B.S. designed the project.

Corresponding author

Correspondence to Paul B Savage.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1–5, Supplementary Scheme 1 and Supplementary Methods (PDF 4072 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Long, X., Deng, S., Mattner, J. et al. Synthesis and evaluation of stimulatory properties of Sphingomonadaceae glycolipids. Nat Chem Biol 3, 559–564 (2007). https://doi.org/10.1038/nchembio.2007.19

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2007.19

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing