Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Modern synthetic efforts toward biologically active terpenes

Abstract

Terpenes represent one of the largest and most diverse classes of secondary metabolites, with over 55,000 members isolated to date. The terpene cyclase enzymes used in nature convert simple, linear hydrocarbon phosphates into an exotic array of chiral, carbocyclic skeletons. Further oxidation and rearrangement results in an almost endless number of conceivable structures. The enormous structural diversity presented by this class of natural products ensures a broad range of biological properties—ranging from anti-cancer and anti-malarial activities to tumor promotion and ion-channel binding. The marked structural differences of terpenes also largely thwart the development of any truly general strategies for their synthetic construction. This review focuses on synthetic strategies directed toward some of the most complex, biologically relevant terpenes prepared by total synthesis within the past decade. Of crucial importance are both the obstacles that modern synthetic chemists must confront when trying to construct such natural products and the key chemical transformations and strategies that have been developed to meet these challenges.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Highly complex terpenes that have been prepared by total synthesis.

Similar content being viewed by others

References

  1. Breitmaier, E. Terpenes: Flavors, Fragrances, Pharmaca, Pheromones (Wiley-VCH, Weinheim, Germany, 2006).

    Book  Google Scholar 

  2. Ruzicka, L. Isoprene rule and the biogenesis of terpenic compounds. Experientia 9, 357–367 (1953).

    Article  CAS  PubMed  Google Scholar 

  3. Eschenmoser, A. & Arigoni, D. Revisited after 50 years: the 'stereochemical interpretation of the biogenetic isoprene rule for the triterpenes'. Helv. Chim. Acta 88, 3011–3050 (2005).

    Article  CAS  Google Scholar 

  4. Nicolaou, K.C., Vourloumis, D., Wissinger, N. & Baran, P.S. The art and science of total synthesis at the dawn of the twenty-first century. Angew. Chem. Int. Edn Engl. 39, 44–122 (2000).

    Article  CAS  Google Scholar 

  5. Nicolaou, K.C. & Sorensen, E.J. Classics in Total Synthesis (VCH, New York, 1996).

    Google Scholar 

  6. Nicolaou, K.C. & Snyder, S.A. Classics in Total Synthesis II (Wiley-VCH, Weinheim, Germany, 2003).

    Google Scholar 

  7. Dewick, P.M. Medicinal Natural Products: A Biosynthetic Approach (Wiley, West Sussex, UK, 2002).

    Google Scholar 

  8. Sierra, M.A. & de la Torre, M.C. Dead Ends and Detours, Direct Ways to Successful Total Synthesis (Wiley-VCH, Weinheim, Germany, 2004).

    Google Scholar 

  9. Dörwald, F.Z. Side Reactions in Organic Synthesis (Wiley-VCH, Weinheim, Germany, 2005).

    Google Scholar 

  10. Corey, E.J. & Cheng, X.M. The Logic of Chemical Synthesis (Wiley, New York, 1995).

    Google Scholar 

  11. Ho, T.-L. Enantioselective Synthesis: Natural Products from Chiral Terpenes (Wiley, New York, 1992).

    Google Scholar 

  12. Jacobsen, E.N., Pfaltz, A. & Yamamoto, H. Comprehensive Asymmetric Catalysis Vols. 1–3 (Springer, New York, 1999).

    Book  Google Scholar 

  13. Newman, D.J. & Cragg, G.M. Natural products as sources of new drugs over the last 25 years. J. Nat. Prod. 70, 461–477 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Wilson, R.M. & Danishefsky, S.J. Small molecule natural products in the discovery of therapeutic agents: the synthesis connection. J. Org. Chem. 71, 8329–8351 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Lipinski, C. & Hopkins, A. Navigating chemical space for biology and medicine. Nature 432, 855–861 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Nicolaou, K.C. & Snyder, S.A. Chasing molecules that were never there: misassigned natural products and the role of chemical synthesis in modern structure elucidation. Angew. Chem. Int. Ed Engl. 44, 1012–1044 (2005).

    Article  PubMed  Google Scholar 

  17. Hecker, E. Cocarcinogenic principles from the seed oil of Croton tiglium and from other Euphorbiaceae. Cancer Res. 28, 2338–2349 (1968).

    CAS  PubMed  Google Scholar 

  18. Zechmeister, K. et al. Structure determination of the new tetracyclic diterpene ingenol-triacetate with triple product methods. Tetrahedron Lett. 11, 4075–4078 (1970).

    Article  Google Scholar 

  19. Kuwajima, I. & Tanino, K. Total synthesis of ingenol. Chem. Rev. 105, 4661–4670 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Alder, R.W. & East, S.P. In/out isomerism. Chem. Rev. 96, 2097–2111 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Funk, R.L., Olmstead, T.A. & Parvez, M. A solution to the in, out-bicyclo[4.4.1]undecan-7-one problem inherent in ingenane total synthesis. J. Am. Chem. Soc. 110, 3298–3300 (1988).

    Article  CAS  Google Scholar 

  22. Paquette, L.A., Ross, R.J. & Springer, J.P. Stereocontrolled construction of an ingenol prototype having a complete array of oxygenated and unsaturated centers. J. Am. Chem. Soc. 110, 6192–6204 (1988).

    Article  CAS  PubMed  Google Scholar 

  23. Winkler, J.D., Henegar, K.E. & Williard, P.G. Inside-outside stereoisomerism. 2. Synthesis of the carbocyclic ring system of the ingenane diterpenes via the intramolecular dioxolenone photocycloaddition. J. Am. Chem. Soc. 109, 2850–2851 (1987).

    Article  CAS  Google Scholar 

  24. Funk, R.L., Olmstead, T.A., Parvez, M. & Stallman, J.B. Stereoselective construction of the complete ingenane ring system. J. Org. Chem. 58, 5873–5875 (1993).

    Article  CAS  Google Scholar 

  25. Rigby, J.H., Bazin, B., Meyer, J.H. & Mohammadi, F. Synthetic studies on the ingenane diterpenes. An improved entry into a trans-intrabridgehead system. Org. Lett. 4, 799–801 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Winkler, J.D. et al. The first total synthesis of (±)-ingenol. J. Am. Chem. Soc. 124, 9726–9728 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tanino, K. et al. Total synthesis of ingenol. J. Am. Chem. Soc. 125, 1498–1500 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Nickel, A. et al. Total synthesis of ingenol. J. Am. Chem. Soc. 126, 16300–16301 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Watanabe, K. et al. Formal synthesis of optically active ingenol via ring-closing olefin metathesis. J. Org. Chem. 69, 7802–7808 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Epstein, O.L. & Cha, J.K. Rapid access to the “in,out”-tetracyclic core of ingenol. Angew. Chem. Int. Ed Engl. 44, 121–123 (2005).

    Article  CAS  Google Scholar 

  31. de Mayo, P. Photochemical synthesis. 37. Enone photoannelation. Acc. Chem. Res. 4, 41–47 (1971).

    Article  CAS  Google Scholar 

  32. Winkler, J.D., Bowen, C.M. & Liotta, F. [2+2] Photocycloaddition/fragmentation strategies for the synthesis of natural and unnatural products. Chem. Rev. 95, 2003–2020 (1995).

    Article  CAS  Google Scholar 

  33. Nicholas, K.M. Chemistry and synthetic utility of cobalt-complexed propargyl cations. Acc. Chem. Res. 20, 207–214 (1987).

    Article  CAS  Google Scholar 

  34. Nicolaou, K.C., Bulger, P.G. & Sarlah, D. Metathesis reactions in total synthesis. Angew. Chem. Int. Ed Engl. 44, 4490–4527 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Wender, P.A. et al. The first synthesis of a daphnane diterpene: the enantiocontrolled total synthesis of (+)-resiniferatoxin. J. Am. Chem. Soc. 119, 12976–12977 (1997).

    Article  CAS  Google Scholar 

  36. Jackson, S.R., Johnson, M.G., Mikami, M., Shiokawa, S. & Carreira, E.M. Rearrangement of a tricyclic 2,5-cyclohexadienone: towards a general synthetic route to the daphnanes and (+)-resiniferatoxin. Angew. Chem. Int. Ed Engl. 40, 2694–2697 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Rigby, J.H. Recent advances in the synthesis of tumor-promoting diterpenes. Stud. Nat. Prod. Chem. 12, 233–274 (1993).

    Article  CAS  Google Scholar 

  38. Wender, P.A., Rice, K.D. & Schnute, M.E. The first formal asymmetric synthesis of phorbol. J. Am. Chem. Soc. 119, 7897–7898 (1997).

    Article  CAS  Google Scholar 

  39. Nicolaou, K.C., Snyder, S.A., Montagnon, T. & Vassilikogiannakis, G. The Diels-Alder reaction in total synthesis. Angew. Chem. Int. Ed Engl. 41, 1668–1698 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Brady, S.F., Singh, M.P., Janso, J.E. & Clardy, J. Guanacastepene, a fungal-derived diterpene antibiotic with a new carbon skeleton. J. Am. Chem. Soc. 122, 2116–2117 (2000).

    Article  CAS  Google Scholar 

  41. Brady, S.F., Bondi, S.M. & Clardy, J. The guanacastepenes: a highly diverse family of secondary metabolites produced by an endophytic fungus. J. Am. Chem. Soc. 123, 9900–9901 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Tan, D.S., Dudley, G.B. & Danishefsky, S.J. Synthesis of the functionalized tricyclic skeleton of guanacastepene A: a tandem epoxide-opening β-elimination/Knoevenagel cyclization. Angew. Chem. Int. Ed Engl. 41, 2185–2188 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Lin, S., Dudley, G.B., Tan, D.S. & Danishefsky, S.J. A stereoselective route to guanacastepene A through a surprising epoxidation. Angew. Chem. Int. Ed Engl. 41, 2188–2191 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Mandal, M. et al. Total synthesis of guanacastepene A: a route to enantiomeric control. J. Org. Chem. 70, 10619–10637 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Mehta, G., Pallavi, K. & Umarye, J.D. A total synthesis of guanacastepene C. Chem. Commun. (Camb) 4456–4458 (2005).

  46. Shipe, W.D. & Sorensen, E.J. Convergent, enantioselective syntheses of guanacastepene A and E featuring a selective cyclobutane fragmentation. J. Am. Chem. Soc. 128, 7025–7035 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Iimura, S., Overman, L.E., Paulini, R. & Zakarian, A. Enantioselective total synthesis of guanacastepene N using an uncommon 7-endo Heck cyclization as a pivotal step. J. Am. Chem. Soc. 128, 13095–13101 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Miller, A.K., Hughes, C.C., Kennedy-Smith, J.J., Gradl, S.N. & Trauner, D. Total synthesis of (−)-heptemerone B and (−)-guanacastepene E. J. Am. Chem. Soc. 128, 17057–17062 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Shi, B., Hawryluk, N.A. & Snider, B.B. Formal synthesis of (±)-guanacastepene A. J. Org. Chem. 68, 1030–1042 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Boyer, F.D., Hanna, I. & Ricard, L. Formal synthesis of (±)-guanacastepene A: a tandem ring-closing metathesis approach. Org. Lett. 6, 1817–1820 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Maifeld, S.V. & Lee, D. Progress toward the total synthesis of guanacastepene A. Synlett 11, 1623–1644 (2006).

    Google Scholar 

  52. Weinmann, H. & Winterfeldt, E. A predictable enantioselective total synthesis of (+)-clavularin A. Synthesis 1995, 1097–1101 (1995).

    Article  Google Scholar 

  53. Nicolaou, K.C., Bulger, P.G. & Sarlah, D. Palladium-catalyzed cross-coupling reactions in total synthesis. Angew. Chem. Int. Ed Engl. 44, 4442–4489 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Dounay, A.B. & Overman, L.E. The asymmetric intramolecular Heck reaction in natural product total synthesis. Chem. Rev. 103, 2945–2963 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Sugano, M. et al. A novel PAF antagonist from a marine fungus Phoma sp. J. Am. Chem. Soc. 113, 5463–5464 (1991).

    Article  CAS  Google Scholar 

  56. Goldring, W.P.D. & Pattenden, G. A total synthesis of phomactin A. Chem. Commun. (Camb) 1736–1737 (2002).

  57. Mohr, P.J. & Halcomb, R.L. Total synthesis of (+)-phomactin A using a B-alkyl Suzuki macrocyclization. J. Am. Chem. Soc. 125, 1712–1713 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Furstner, A. Carbon-carbon bond formations involving organochromium (III) reagents. Chem. Rev. 99, 991–1045 (1999).

    Article  PubMed  Google Scholar 

  59. Chemler, S.R., Trauner, D. & Danishefsky, S.J. The B-alkyl Suzuki-Miyaura cross-coupling reaction: development, mechanistic study, and applications in natural product synthesis. Angew. Chem. Int. Ed. 40, 4544–4568 (2001).

    Article  CAS  Google Scholar 

  60. Chen, K. et al. Anti-AIDs agents—XIX. Neotripterifordin, a novel anti-HIV principle from Tripterygium wilfordii: isolation and structural elucidation. Bioorg. Med. Chem. 3, 1345–1348 (1995).

    Article  CAS  PubMed  Google Scholar 

  61. Corey, E.J. & Liu, K. Enantioselective total synthesis of the potent anti-HIV agent neotripterifordin. Reassignment of stereochemistry at C(16). J. Am. Chem. Soc. 119, 9929–9930 (1997).

    Article  CAS  Google Scholar 

  62. Gao, Y. et al. Catalytic asymmetric epoxidation and kinetic resolution: modified procedures including in situ derivatization. J. Am. Chem. Soc. 109, 5765–5780 (1987).

    Article  CAS  Google Scholar 

  63. Yoder, R.A. & Johnston, J.N. A case study in biomimetic total synthesis: polyolefin carbocyclizations to terpenes and steroids. Chem. Rev. 105, 4730–4756 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mossa, J.S. et al. Saudin, a hypoglycemic diterpenoid with a novel 6,7-secolabdane carbon skeleton, from Cluytia richardiana. J. Org. Chem. 50, 916–918 (1985).

    Article  CAS  Google Scholar 

  65. Winkler, J.D. & Doherty, E.M. The first total synthesis of (±)-saudin. J. Am. Chem. Soc. 121, 7425–7426 (1999).

    Article  CAS  Google Scholar 

  66. Boeckman, R.K., del Rosario, M., Ferreira, R., Mitchell, L.H. & Shao, P. An enantioselective total synthesis of (+)- and (−)-saudin. Determination of the absolute configuration. J. Am. Chem. Soc. 124, 190–191 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Labadie, G.R., Cravero, R.M. & Gonzalez-Sierra, M. Studies toward the total synthesis of saudine: simple and stereoselective synthesis of a model caged ketal backbone. Synth. Commun. 26, 4671–4684 (1996).

    Article  CAS  Google Scholar 

  68. Labadie, G.R., Cravero, R.M. & Gonzalez-Sierra, M. A short synthesis of the main lactone ketal backbone present in saudin Molecules 5, 321–322 (2000).

    Article  CAS  Google Scholar 

  69. Tambar, U.K., Kano, T., Zepernick, J.F. & Stoltz, B.M. Convergent and diastereoselective synthesis of the polycyclic pyran core of saudin. J. Org. Chem. 71, 8357–8364 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Martin Castro, A.M. Clasien rearrangement over the past nine decades. Chem. Rev. 104, 2939–3002 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Lindel, T. et al. Eleutherobin, a new cytotoxin that mimics paclitaxel (Taxol) by stabilizing microtubules. J. Am. Chem. Soc. 119, 8744–8745 (1997).

    Article  CAS  Google Scholar 

  72. Nicolaou, K.C. et al. Synthesis of the tricyclic core of eleutherobin and sarcodictyins and total synthesis of sarcodictyin A. J. Am. Chem. Soc. 119, 11353–11354 (1997).

    Article  CAS  Google Scholar 

  73. Nicolaou, K.C. et al. Total synthesis of eleutherobin and eleuthosides A and B. J. Am. Chem. Soc. 120, 8674–8680 (1998).

    Article  CAS  Google Scholar 

  74. Nicolaou, K.C. et al. Total synthesis of eleutherobin. Angew. Chem. Int. Ed Engl. 36, 2520–2524 (1997).

    Article  CAS  Google Scholar 

  75. Chen, X.T. et al. A convergent route for the total synthesis of the eleuthesides. Angew. Chem. Int. Ed Engl. 37, 185–186 (1998).

    Article  CAS  Google Scholar 

  76. Chen, X.T. et al. The total synthesis of eleutherobin: a surprise ending. Angew. Chem. Int. Ed Engl. 37, 789–792 (1998).

    Article  CAS  PubMed  Google Scholar 

  77. Chen, X.T. et al. The total synthesis of eleutherobin. J. Am. Chem. Soc. 121, 6563–6579 (1999).

    Article  CAS  Google Scholar 

  78. Castoldi, D. et al. A formal total synthesis of eleutherobin through an unprecedented kinetically controlled ring-closing-metathesis reaction of a densely functionalized diene. Angew. Chem. Int. Ed Engl. 44, 588–591 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Tidwell, T.T. Ketenes (Wiley, New York, 1995).

    Google Scholar 

  80. Iimura, S. et al. Terpestacin, a novel syncytium formation inhibitor, isolated from Arthrinium species. Tetrahedron Lett. 34, 493–496 (1993).

    Article  CAS  Google Scholar 

  81. Tatsuta, K., Masuda, N. & Nishida, H. The first total synthesis of (±)-terpestacin, HIV syncytium formation inhibitor. Tetrahedron Lett. 39, 83–86 (1998).

    Article  CAS  Google Scholar 

  82. Tatsuta, K. & Masuda, N. The first total synthesis of natural (+)-terpestacin, syncytium formation inhibitor. J. Antibiot. (Tokyo) 51, 602–606 (1998).

    Article  CAS  Google Scholar 

  83. Myers, A.G., Siu, M. & Ren, F. Enantioselective synthesis of (−)-terpestacin and (−) fusaproliferin: clarification of optical rotational measurements and absolute configurational assignments establishes a homochiral structural series. J. Am. Chem. Soc. 124, 4230–4232 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Chan, J. & Jamison, T.F. Synthesis of (−)-terpestacin via catalytic, stereoselective fragment coupling: siccanol is terpestacin, not 11-epi terpestacin. J. Am. Chem. Soc. 125, 11514–11515 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Chan, J. & Jamison, T.F. Enantioselective synthesis of (−)-terpestacin and structural revision of siccanol using catalytic stereoselective fragment couplings and macrocyclizations. J. Am. Chem. Soc. 126, 10682–10691 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Trost, B.M., Dong, G. & Vance, J.A.A. Diosphenol-based strategy for the total synthesis of (−)-terpestacin. J. Am. Chem. Soc. 129, 4540–4541 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Nicolaou, K.C., Harter, M.W., Gunzner, J.L. & Nadin, A. The Wittig and related reactions in natural products synthesis. Liebigs. Ann. 1997, 1283–1301 (1997).

    Article  Google Scholar 

  88. Brummond, K.M. & Kent, J.L. Recent advances in the Pauson-Khand reaction and related [2+2+1] cycloadditions. Tetrahedron 56, 3263–3283 (2000).

    Article  CAS  Google Scholar 

  89. Corey, E.J., Ohno, M., Mitra, R.B. & Vatakencherry, P.A. Total synthesis of longifolene. J. Am. Chem. Soc. 86, 478–485 (1964).

    Article  CAS  Google Scholar 

  90. Barton, D.H.R. The conformation of the steroid nucleus. Experientia 6, 316–320 (1950).

    Article  CAS  PubMed  Google Scholar 

  91. Dyker, G. Handbook of C-H Transformations: Applications in Organic Synthesis Vols. 1–2 (Wiley-VCH, Weinheim, Germany, 2005).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phil S Baran.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maimone, T., Baran, P. Modern synthetic efforts toward biologically active terpenes. Nat Chem Biol 3, 396–407 (2007). https://doi.org/10.1038/nchembio.2007.1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2007.1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing