Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Discovery of proteinaceous N-modification in lysine biosynthesis of Thermus thermophilus

Abstract

Although the latter portion of lysine biosynthesis, the conversion of α-aminoadipate (AAA) to lysine, in Thermus thermophilus is similar to the latter portion of arginine biosynthesis, enzymes homologous to ArgA and ArgJ are absent from the lysine pathway. Because ArgA and ArgJ are known to modify the amino group of glutamate to avoid intramolecular cyclization of intermediates, their absence suggests that the pathway includes an alternative N-modification system. We reconstituted the conversion of AAA to lysine and found that the amino group of AAA is modified by attachment to the γ-carboxyl group of the C-terminal Glu54 of a small protein, LysW; that the side chain of AAA is converted to the lysyl side chain while still attached to LysW; and that lysine is subsequently liberated from the LysW-lysine fusion. The fact that biosynthetic enzymes recognize the acidic globular domain of LysW indicates that LysW acts as a carrier protein or protein scaffold for the biosynthetic enzymes. This study thus reveals the previously unknown function of a small protein in primary metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lysine biosynthetic pathway.
Figure 2: Gene clusters for lysine biosynthetic enzymes and carrier proteins in T. thermophilus, D. radiodurans, and several archaea.
Figure 3: In vitro lysine synthesis.
Figure 4: Analysis of synthetic intermediates.
Figure 5: γ-linkage-specific reactions of lysine biosynthetic enzymes.
Figure 6: Proposed LysW-mediated mechanism of lysine biosynthesis.

Similar content being viewed by others

References

  1. Broquist, H.P. Lysine biosynthesis (yeast). Methods Enzymol. 17, 112–129 (1971).

    Article  Google Scholar 

  2. Buchli, R. et al. Cloning and functional expression of a soluble form of kynurenine/α-aminoadipate aminotransferase from rat kidney. J. Biol. Chem. 270, 29330–29335 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Vogel, H.J. Distribution of lysine pathway among fungi: evolutionary implications. Am. Nat. 98, 446–455 (1964).

    Article  Google Scholar 

  4. Kobashi, N., Nishiyama, M. & Tanokura, M. Aspartate kinase-independent lysine synthesis in an extremely thermophilic bacterium, Thermus thermophilus: lysine is synthesized via α-aminoadipic acid, not via diaminopimeric acid. J. Bacteriol. 181, 1713–1718 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Nishida, H. et al. A prokaryotic gene cluster involved in synthesis of lysine through the amino adipate pathway: a key to the evolution of amino acid biosynthesis. Genome Res. 9, 1175–1183 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Wulandari, A.P. et al. Characterization of bacterial homocitrate synthase involved in lysine biosynthesis. FEBS Lett. 522, 35–40 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Miyazaki, J., Kobashi, N., Nishiyama, M. & Yamane, H. Characterization of homoisocitrate dehydrogenase involved in lysine biosynthesis of an extremely thermophilic bacterium, Thermus thermophilus HB27, and evolutionary implication of β-decarboxylating dehydrogenase. J. Biol. Chem. 278, 1864–1871 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Jia, Y., Tomita, T., Yamauchi, K., Nishiyama, M. & Palmer, D.R.J. Kinetics and product analysis of the reaction catalyzed by recombinant homoaconitase from Thermus thermophilus. Biochem. J. 396, 479–485 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Miyazaki, T., Miyazaki, J., Yamane, H. & Nishiyama, M. α-Aminoadipate aminotransferase from an extremely thermophilic bacterium, Thermus thermophilus. Microbiology 150, 2327–2334 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Miyazaki, J., Kobashi, N., Nishiyama, M. & Yamane, H. Functional and evolutionary relationship between arginine biosynthesis and prokaryotic lysine biosynthesis through α-aminoadipate. J. Bacteriol. 183, 5067–5073 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Miyazaki, J., Kobashi, N., Fujii, T., Nishiyama, M. & Yamane, H. Characterization of a lysK gene as an argE homolog in Thermus thermophilus HB27. FEBS Lett. 512, 269–274 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Xu, Y., Labedan, B. & Glansdorff, N. Surprising arginine biosynthesis: a reappraisal of the enzymology and evolution of the pathway in microorganisms. Microbiol. Mol. Biol. Rev. 71, 36–47 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Leisinger, T. & Haas, D. N-Acetylglutamate synthase of Escherichia coli regulation of synthesis and activity by arginine. J. Biol. Chem. 250, 1690–1693 (1975).

    CAS  PubMed  Google Scholar 

  14. Baetens, M., Legrain, C., Boyen, A. & Glansdorff, N. Genes and enzymes of the acetyl cycle of arginine biosynthesis in the extreme thermophilic bacterium Thermus thermophilus HB27. Microbiology 144, 479–492 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Martin, P.R. & Mulks, M.H. Sequence analysis and complementation studies of the argJ gene encoding ornithine acetyltransferase from Neisseria gonorrhoeae. J. Bacteriol. 174, 2694–2701 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Snoke, J.E. Isolation and properties of yeast glutathione synthetase. J. Biol. Chem. 213, 813–824 (1955).

    CAS  PubMed  Google Scholar 

  17. Kang, W.K., Icho, T., Isono, S., Kitakawa, M. & Isono, K. Characterization of the gene rimK responsible for the addition of glutamic acid residues to the C-terminus of ribosomal protein S6 in Escherichia coli K12. Mol. Gen. Genet. 217, 281–288 (1989).

    Article  CAS  PubMed  Google Scholar 

  18. Iwasaki, T. et al. Rational design of a mononuclear metal site into the archaeal Rieske-type protein scaffold. J. Biol. Chem. 280, 9129–9134 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Kurihara, S. et al. A novel putrescine utilization pathway involves γ-glutamylated intermediates of Escherichia coli K-12. J. Biol. Chem. 280, 4602–4608 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Majerus, P.W., Alberts, A.W. & Vagelos, P.R. The acyl carrier protein of fatty acid synthesis: purification, physical properties, and substrate binding site. Proc. Natl. Acad. Sci. USA 51, 1231–1238 (1964).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stachelhaus, T., Huser, A. & Marahiel, M.A. Biochemical characterization of peptidyl carrier protein (PCP), the thiolation domain of multifunctional peptide synthetases. Chem. Biol. 3, 913–921 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Lynen, F. On the structure of fatty acid synthetase of yeast. Eur. J. Biochem. 112, 431–442 (1980).

    Article  CAS  PubMed  Google Scholar 

  23. Lomakin, I.B., Xiong, Y. & Steitz, T.A. The crystal structure of yeast fatty acid synthase, a cellular machine with eight active sites working together. Cell 129, 319–332 (2007).

    Article  PubMed  Google Scholar 

  24. Jenni, S. et al. Structure of fungal fatty acid synthase and implications for iterative substrate shuttling. Science 316, 254–261 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Zhao, Q. et al. Characterization of the azinomycin B biosynthetic gene cluster revealing a different iterative type I polyketide synthase for naphthoate biosynthesis. Chem. Biol. 15, 693–705 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gouet, P., Courcelle, E., Stuart, D.I. & Metoz, F. ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15, 305–308 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Henne, A. et al. The genome sequence of the extreme thermophile Thermus thermophilus. Nat. Biotechnol. 22, 547–553 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. White, O. et al. Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science 286, 1571–1577 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kawarabayasi, Y. et al. Complete genome sequence of an aerobic thermoacidophilic crenarchaeon, Sulfolobus tokodaii strain7. DNA Res. 8, 123–140 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. She, Q. et al. The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proc. Natl. Acad. Sci. USA 98, 7835–7840 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kawarabayasi, Y. et al. Complete sequence and gene organization of the genome of a hyper-thermophilic archaebacterium, Pyrococcus horikoshii OT3. DNA Res. 5, 55–76 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Robb, F.T. et al. Genomic sequence of hyperthermophile, Pyrococcus furiosus: implications for physiology and enzymology. Methods Enzymol. 330, 134–157 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Kawarabayasi, Y. et al. Complete genome sequence of an aerobic hyper-thermophilic crenarchaeon, Aeropyrum pernix K1. DNA Res. 6, 83–101, 145–152 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Bolhuis, H. et al. The genome of the square archaeon Haloquadratum walsbyi: life at the limits of water activity. BMC Genomics 7, 169 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Baliga, N.S. et al. Genome sequence of Haloarcula marismortui: a halophilic archaeon from the Dead Sea. Genome Res. 14, 2221–2234 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank H. Satsu for technical help with amino acid analysis. This work was supported in part by a grant-in-aid for scientific research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan, from the Nagase Science and Technology Foundation, from the Asahi Glass Foundation and from the Charitable Trust Araki Medical and Biochemistry Memorial Research Promotion Fund.

Author information

Authors and Affiliations

Authors

Contributions

Research planning and supervision were by T.T., T.K. and M.N.; biochemical experiments were by A.H.; gene knockout and replacement of T. thermophilus were by A.S.; LC-MS/MS and MALDI-TOF MS were by H.T., R.M., T.F. and C.N.; in silico modeling was by H.K. and T.T.; and manuscript writing was by A.H., T.T. and M.N.

Corresponding author

Correspondence to Makoto Nishiyama.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9, Supplementary Tables 1 and 2 and Supplementary Methods (PDF 4638 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horie, A., Tomita, T., Saiki, A. et al. Discovery of proteinaceous N-modification in lysine biosynthesis of Thermus thermophilus. Nat Chem Biol 5, 673–679 (2009). https://doi.org/10.1038/nchembio.198

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.198

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing