Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanism of hydrogen activation by [NiFe] hydrogenases

Abstract

The active site of [NiFe] hydrogenases contains a strictly conserved arginine that suspends a guanidine nitrogen atom <4.5 Å above the nickel and iron atoms. The guanidine headgroup interacts with the side chains of two conserved aspartic acid residues to complete an outer-shell canopy that has thus far proved intractable to investigation by site-directed mutagenesis. Using hydrogenase-1 from Escherichia coli, the strictly conserved residues R509 and D574 have been replaced by lysine (R509K) and asparagine (D574N) and the highly conserved D118 has been replaced by alanine (D118A) or asparagine (D118N/D574N). Each enzyme variant is stable, and their [(RS)2Niμ(SR)2Fe(CO)(CN)2] inner coordination shells are virtually unchanged. The R509K variant had >100-fold lower activity than native enzyme. Conversely, the variants D574N, D118A and D118N/D574N, in which the position of the guanidine headgroup is retained, showed 83%, 26% and 20% activity, respectively. The special kinetic requirement for R509 implicates the suspended guanidine group as the general base in H2 activation by [NiFe] hydrogenases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A stereo image of the active site of [NiFe] hydrogenases as exemplified by E. coli Hyd-1 (PDB 5A4M, oxygenation sites omitted).
Figure 2: Comparison of activities for Hyd-1 and variants investigated in this research.
Figure 3: Protein film electrochemistry of native and variant Hyd-1 enzymes described in this paper.
Figure 4: The crystal structures of the active sites of as-isolated and chemically oxidized enzymes described in this paper.
Figure 5: Proposal for the H2 activation step in [NiFe] hydrogenases using suspended arginine as a general base, as in a frustrated Lewis pair mechanism.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Lubitz, W., Ogata, H., Rüdiger, O. & Reijerse, E. Hydrogenases. Chem. Rev. 114, 4081–4148 (2014).

    Article  CAS  Google Scholar 

  2. Volbeda, A. et al. X-ray crystallographic and computational studies of the O2-tolerant [NiFe]-hydrogenase 1 from Escherichia coli. Proc. Natl. Acad. Sci. USA 109, 5305–5310 (2012).

    Article  CAS  Google Scholar 

  3. Stephan, D.W. & Erker, G. Frustrated Lewis pairs: metal-free hydrogen activation and more. Angew. Chem. Int. Ed. Engl. 49, 46–76 (2010).

    Article  CAS  Google Scholar 

  4. Szőri-Dorogházi, E. et al. Analyses of the large subunit histidine-rich motif expose an alternative proton transfer pathway in [NiFe] hydrogenases. PLoS One 7, e34666 (2012).

    Article  Google Scholar 

  5. Volbeda, A. et al. Structure of the [NiFe] hydrogenase active site: evidence for biologically uncommon Fe ligands. J. Am. Chem. Soc. 118, 12989–12996 (1996).

    Article  CAS  Google Scholar 

  6. de Lacey, A.L. et al. Infrared-spectroelectrochemical characterization of the [NiFe] hydrogenase of Desulfovibrio gigas. J. Am. Chem. Soc. 119, 7181–7189 (1997).

    Article  CAS  Google Scholar 

  7. deLacey, A.L., Fernandez, V.M., Rousset, M., Cavazza, C. & Hatchikian, E.C. Spectroscopic and kinetic characterization of active site mutants of Desulfovibrio fructosovorans Ni-Fe hydrogenase. J. Biol. Inorg. Chem. 8, 129–134 (2003).

    Article  CAS  Google Scholar 

  8. Evans, R.M. et al. Principles of sustained enzymatic hydrogen oxidation in the presence of oxygen—the crucial influence of high potential Fe-S clusters in the electron relay of [NiFe]-hydrogenases. J. Am. Chem. Soc. 135, 2694–2707 (2013).

    Article  CAS  Google Scholar 

  9. Hexter, S.V., Grey, F., Happe, T., Climent, V. & Armstrong, F.A. Electrocatalytic mechanism of reversible hydrogen cycling by enzymes and distinctions between the major classes of hydrogenases. Proc. Natl. Acad. Sci. USA 109, 11516–11521 (2012).

    Article  CAS  Google Scholar 

  10. Murphy, B.J., Sargent, F. & Armstrong, F.A. Transforming an oxygen-tolerant NiFe uptake hydrogenase into a proficient, reversible hydrogen producer. Energy Environ. Sci. 7, 1426–1433 (2014).

    Article  CAS  Google Scholar 

  11. Armstrong, F.A. Dynamic electrochemical experiments on hydrogenases. Photosynth. Res. 102, 541–550 (2009).

    Article  CAS  Google Scholar 

  12. Armstrong, F.A. et al. Dynamic electrochemical investigations of hydrogen oxidation and production by enzymes and implications for future technology. Chem. Soc. Rev. 38, 36–51 (2009).

    Article  CAS  Google Scholar 

  13. Volbeda, A. et al. Crystallographic studies of [NiFe]-hydrogenase mutants: towards consensus structures for the elusive unready oxidized states. J. Biol. Inorg. Chem. 20, 11–22 (2015).

    Article  CAS  Google Scholar 

  14. Ogata, H., Nishikawa, K. & Lubitz, W. Hydrogens detected by subatomic resolution protein crystallography in a [NiFe] hydrogenase. Nature 520, 571–574 (2015).

    Article  Google Scholar 

  15. Fontecilla-Camps, J.C., Volbeda, A., Cavazza, C. & Nicolet, Y. Structure/function relationships of [NiFe]- and [FeFe]-hydrogenases. Chem. Rev. 107, 4273–4303 (2007).

    Article  CAS  Google Scholar 

  16. Dulmage, W.J. & Lipscomb, W.N. The crystal structures of hydrogen cyanide, HCN. Acta Crystallogr. 4, 330–334 (1951).

    Article  CAS  Google Scholar 

  17. Domagała, M. & Grabowski, S.J. X-H–π and X-H–N hydrogen bonds—acetylene and hydrogen cyanide as proton acceptors. Chem. Phys. 363, 42–48 (2009).

    Article  Google Scholar 

  18. Simmons, T.R., Berggren, G., Bacchi, M., Fontecave, M. & Artero, V. Mimicking hydrogenases: from biomimetics to artificial enzymes. Coord. Chem. Rev. 270–271, 127–150 (2014).

    Article  Google Scholar 

  19. Morris, R.H. Estimating the acidity of transition metal hydride and dihydrogen complexes by adding ligand acidity constants. J. Am. Chem. Soc. 136, 1948–1959 (2014).

    Article  CAS  Google Scholar 

  20. Ogata, H. et al. Hydride bridge in [NiFe]-hydrogenase observed by nuclear resonance vibrational spectroscopy. Nat. Commun. 6, 7890 (2015).

    Article  CAS  Google Scholar 

  21. Weber, K. et al. A functional [NiFe]-hydrogenase model compound that undergoes biologically relevant reversible thiolate protonation. J. Am. Chem. Soc. 134, 20745–20755 (2012).

    Article  CAS  Google Scholar 

  22. Ogo, S. et al. A functional [NiFe]hydrogenase mimic that catalyzes electron and hydride transfer from H2 . Science 339, 682–684 (2013).

    Article  CAS  Google Scholar 

  23. Dementin, S. et al. A glutamate is the essential proton transfer gate during the catalytic cycle of the [NiFe] hydrogenase. J. Biol. Chem. 279, 10508–10513 (2004).

    Article  CAS  Google Scholar 

  24. Guillén Schlippe, Y.V. & Hedstrom, L. A twisted base? The role of arginine in enzyme-catalyzed proton abstractions. Arch. Biochem. Biophys. 433, 266–278 (2005).

    Article  Google Scholar 

  25. Pankhurst, K.L. et al. A proton delivery pathway in the soluble fumarate reductase from Shewanella frigidimarina. J. Biol. Chem. 281, 20589–20597 (2006).

    Article  CAS  Google Scholar 

  26. Tedeschi, G. et al. Probing the active site of L-aspartate oxidase by site-directed mutagenesis: role of basic residues in fumarate reduction. Biochemistry 40, 4738–4744 (2001).

    Article  CAS  Google Scholar 

  27. Hwang, H.J., Dilbeck, P., Debus, R.J. & Burnap, R.L. Mutation of arginine 357 of the CP43 protein of photosystem II severely impairs the catalytic S-state cycle of the H2O oxidation complex. Biochemistry 46, 11987–11997 (2007).

    Article  CAS  Google Scholar 

  28. Dutta, A., DuBois, D.L., Roberts, J.A.S. & Shaw, W.J. Amino acid modified Ni catalyst exhibits reversible H2 oxidation/production over a broad pH range at elevated temperatures. Proc. Natl. Acad. Sci. USA 111, 16286–16291 (2014).

    Article  CAS  Google Scholar 

  29. Berggren, G. et al. Biomimetic assembly and activation of [FeFe]-hydrogenases. Nature 499, 66–69 (2013).

    Article  CAS  Google Scholar 

  30. Hatzixanthis, K., Palmer, T. & Sargent, F. A subset of bacterial inner membrane proteins integrated by the twin-arginine translocase. Mol. Microbiol. 49, 1377–1390 (2003).

    Article  CAS  Google Scholar 

  31. Hamilton, C.M., Aldea, M., Washburn, B.K., Babitzke, P. & Kushner, S.R. New method for generating deletions and gene replacements in Escherichia coli. J. Bacteriol. 171, 4617–4622 (1989).

    Article  CAS  Google Scholar 

  32. Lukey, M.J. et al. Oxygen-tolerant [NiFe]-hydrogenases: the individual and collective importance of supernumerary cysteines at the proximal Fe-S cluster. J. Am. Chem. Soc. 133, 16881–16892 (2011).

    Article  CAS  Google Scholar 

  33. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    Article  CAS  Google Scholar 

  34. Arp, D.J. & Burris, R.H. Kinetic mechanism of the hydrogen-oxidizing hydrogenase from soybean nodule bacteroids. Biochemistry 20, 2234–2240 (1981).

    Article  CAS  Google Scholar 

  35. Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    Article  CAS  Google Scholar 

  36. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  37. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  Google Scholar 

  38. Murshudov, G.N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr. 67, 355–367 (2011).

    Article  CAS  Google Scholar 

  39. Kabsch, W. A solution for the best rotation to relate two sets of vectors. Acta Crystallogr. A 32, 922–923 (1976).

    Article  Google Scholar 

  40. Bard, A.J. & Faulkner, L.R. Electrochemical Methods (Wiley, New York, 2001).

  41. Evans, R.M. & Armstrong, F.A. in Metalloproteins—Methods and Protocols (eds. Fontecilla-Camps, J.C. & Nicolet, Y.) 73–94 (Humana Press, New York, 2014).

Download references

Acknowledgements

This work was supported by the UK Biological and Biotechnology Sciences Research Council, grants BB/I022309-1 and BB/L009722/1 to F.A.A. and BB/L008521/1 to F.S. A studentship for E.J.B. was supported by grants from Global Innovation Initiative and the UK Engineering and Physical Sciences Research Council. F.A.A. is a Royal Society Wolfson Research Merit Award holder. We thank the Diamond Light Source for beam time proposal mx9306 and the staff of beamlines i02, i04 and i04-1 for their assistance during data collection.

Author information

Authors and Affiliations

Authors

Contributions

F.A.A., F.S. and R.M.E. proposed the study. R.M.E., E.J.B. and S.A.M.W. carried out all molecular biology, kinetic and electrochemical characterizations. R.M.E., E.N., E.J.B., S.A.M.W. and S.B.C. produced and purified enzymes. S.B.C. carried out all X-ray data collection, and S.B.C. and S.E.V.P. were responsible for structural determinations. F.A.A., R.M.E., S.E.V.P. and S.B.C. wrote the manuscript with input from other authors.

Corresponding authors

Correspondence to Stephen B Carr, Simon E V Phillips or Fraser A Armstrong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–4 and Supplementary Figures 1–6. (PDF 2117 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evans, R., Brooke, E., Wehlin, S. et al. Mechanism of hydrogen activation by [NiFe] hydrogenases. Nat Chem Biol 12, 46–50 (2016). https://doi.org/10.1038/nchembio.1976

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1976

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing