Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CRISPR-Cas9–based target validation for p53-reactivating model compounds

Abstract

Inactivation of the p53 tumor suppressor by Mdm2 is one of the most frequent events in cancer, so compounds targeting the p53-Mdm2 interaction are promising for cancer therapy. Mechanisms conferring resistance to p53-reactivating compounds are largely unknown. Here we show using CRISPR-Cas9–based target validation in lung and colorectal cancer that the activity of nutlin, which blocks the p53-binding pocket of Mdm2, strictly depends on functional p53. In contrast, sensitivity to the drug RITA, which binds the Mdm2-interacting N terminus of p53, correlates with induction of DNA damage. Cells with primary or acquired RITA resistance display cross-resistance to DNA crosslinking compounds such as cisplatin and show increased DNA cross-link repair. Inhibition of FancD2 by RNA interference or pharmacological mTOR inhibitors restores RITA sensitivity. The therapeutic response to p53-reactivating compounds is therefore limited by compound-specific resistance mechanisms that can be resolved by CRISPR-Cas9–based target validation and should be considered when allocating patients to p53-reactivating treatments.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: p53-deficient cells are resistant to nutlin but not RITA.
Figure 2: RITA sensitivity correlates with induction of DNA damage.
Figure 3: RITA resistant cells are cross-resistant to cisplatin.
Figure 4: RITA resistance is mediated by FancD2.
Figure 5: RAD18 depletion sensitizes to RITA.
Figure 6: RITA resistance is overcome with mTOR inhibitors.

Similar content being viewed by others

References

  1. Pant, V. & Lozano, G. Limiting the power of p53 through the ubiquitin proteasome pathway. Genes Dev. 28, 1739–1751 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ventura, A. et al. Restoration of p53 function leads to tumour regression in vivo. Nature 445, 661–665 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Martins, C.P., Brown-Swigart, L. & Evan, G.I. Modeling the therapeutic efficacy of p53 restoration in tumors. Cell 127, 1323–1334 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Xue, W. et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445, 656–660 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Feldser, D.M. et al. Stage-specific sensitivity to p53 restoration during lung cancer progression. Nature 468, 572–575 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kandoth, C. et al. Mutational landscape and significance across 12 major cancer types. Nature 502, 333–339 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cheok, C.F., Verma, C.S., Baselga, J. & Lane, D.P. Translating p53 into the clinic. Nat. Rev. Clin. Oncol. 8, 25–37 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Kussie, P.H. et al. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274, 948–953 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Vassilev, L.T. et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844–848 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Khoo, K.H., Verma, C.S. & Lane, D.P. Drugging the p53 pathway: understanding the route to clinical efficacy. Nat. Rev. Drug Discov. 13, 217–236 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Michaelis, M. et al. Adaptation of cancer cells from different entities to the MDM2 inhibitor nutlin-3 results in the emergence of p53-mutated multi-drug-resistant cancer cells. Cell Death Dis. 2, e243 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Garnett, M.J. et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 483, 570–575 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lau, L.M.S., Nugent, J.K., Zhao, X. & Irwin, M.S. HDM2 antagonist Nutlin-3 disrupts p73–HDM2 binding and enhances p73 function. Oncogene 27, 997–1003 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Michaelis, M. et al. Reversal of P-glycoprotein–mediated multidrug resistance by the murine double minute 2 antagonist nutlin-3. Cancer Res. 69, 416–421 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Nieves-Neira, W. et al. DNA protein cross-links produced by NSC 652287, a novel thiophene derivative active against human renal cancer cells. Mol. Pharmacol. 56, 478–484 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Issaeva, N. et al. Small molecule RITA binds to p53, blocks p53–HDM-2 interaction and activates p53 function in tumors. Nat. Med. 10, 1321–1328 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Bunz, F. et al. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282, 1497–1501 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Tovar, C. et al. Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy. Proc. Natl. Acad. Sci. USA 103, 1888–1893 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Enge, M. et al. MDM2-dependent downregulation of p21 and hnRNP K provides a switch between apoptosis and growth arrest induced by pharmacologically activated p53. Cancer Cell 15, 171–183 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Hedström, E., Eriksson, S., Zawacka-Pankau, J., Arnér, E.S.J. & Selivanova, G. p53-dependent inhibition of TrxR1 contributes to the tumor-specific induction of apoptosis by RITA. Cell Cycle 8, 3584–3591 (2009).

    Article  PubMed  Google Scholar 

  21. Grinkevich, V.V. et al. Ablation of key oncogenic pathways by RITA-reactivated p53 is required for efficient apoptosis. Cancer Cell 15, 441–453 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Weilbacher, A., Gutekunst, M., Oren, M., Aulitzky, W.E. & van der Kuip, H. RITA can induce cell death in p53-defective cells independently of p53 function via activation of JNK/SAPK and p38. Cell Death Dis. 5, e1318 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhao, C.Y., Grinkevich, V.V., Nikulenkov, F., Bao, W. & Selivanova, G. Rescue of the apoptotic-inducing function of mutant p53 by small molecule RITA. Cell Cycle 9, 1847–1855 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Burmakin, M., Shi, Y., Hedström, E., Kogner, P. & Selivanova, G. Dual targeting of wild-type and mutant p53 by small molecule RITA results in the inhibition of N-Myc and key survival oncogenes and kills neuroblastoma cells in vivo and in vitro. Clin. Cancer Res. 19, 5092–5103 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Wei, X. et al. A simple statistical test to infer the causality of target/phenotype correlation from small molecule phenotypic screens. Bioinformatics 28, 301–305 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Smurnyy, Y. et al. DNA sequencing and CRISPR-Cas9 gene editing for target validation in mammalian cells. Nat. Chem. Biol. 10, 623–625 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Hsu, P.D., Lander, E.S. & Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262–1278 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kasap, C., Elemento, O. & Kapoor, T.M. DrugTargetSeqR: a genomics- and CRISPR-Cas9–based method to analyze drug targets. Nat. Chem. Biol. 10, 626–628 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Charles, J.P. et al. Monitoring the dynamics of clonal tumour evolution in vivo using secreted luciferases. Nat. Commun. 5, 3981 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. de Lange, J., Verlaan-de Vries, M. & Teunisse, A.F.A.S. & Jochemsen, A.G. Chk2 mediates RITA-induced apoptosis. Cell Death Differ. 19, 980–989 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Niedernhofer, L.J. et al. The structure-specific endonuclease Ercc1-Xpf is required to resolve DNA interstrand cross-link–induced double-strand breaks. Mol. Cell. Biol. 24, 5776–5787 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kelland, L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer 7, 573–584 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Kim, H. & D'Andrea, A.D. Regulation of DNA cross-link repair by the Fanconi anemia/BRCA pathway. Genes Dev. 26, 1393–1408 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kachnic, L.A. et al. FANCD2 but not FANCA promotes cellular resistance to type II topoisomerase poisons. Cancer Lett. 305, 86–93 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Song, I.Y. et al. Rad18-mediated translesion synthesis of bulky DNA adducts is coupled to activation of the Fanconi anemia DNA repair pathway. J. Biol. Chem. 285, 31525–31536 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Park, H.K., Wang, H., Zhang, J., Datta, S. & Fei, P. Convergence of Rad6/Rad18 and Fanconi anemia tumor suppressor pathways upon DNA damage. PLoS ONE 5, e13313 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Williams, S.A., Longerich, S., Sung, P., Vaziri, C. & Kupfer, G.M. The E3 ubiquitin ligase RAD18 regulates ubiquitylation and chromatin loading of FANCD2 and FANCI. Blood 117, 5078–5087 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang, J., Zhao, D., Wang, H., Lin, C.-J. & Fei, P. FANCD2 monoubiquitination provides a link between the HHR6 and FA-BRCA pathways. Cell Cycle 7, 407–413 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Pickering, A. et al. In vitro FANCD2 monoubiquitination by HHR6 and hRad18. Cell Cycle 12, 3448–3449 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shen, C. et al. Regulation of FANCD2 by the mTOR pathway contributes to the resistance of cancer cells to DNA double-strand breaks. Cancer Res. 73, 3393–3401 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Guo, F. et al. mTOR regulates DNA damage response through NF-κB–mediated FANCD2 pathway in hematopoietic cells. Leukemia 27, 2040–2046 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Krajewski, M., Ozdowy, P., D'Silva, L., Rothweiler, U. & Holak, T.A. NMR indicates that the small molecule RITA does not block p53–MDM2 binding in vitro. Nat. Med. 11, 1135–1156 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Visvader, J.E. & Lindeman, G.J. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat. Rev. Cancer 8, 755–768 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Beck, B. & Blanpain, C. Unravelling cancer stem cell potential. Nat. Rev. Cancer 13, 727–738 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Bertolini, G. et al. Highly tumorigenic lung cancer CD133+ cells display stem-like features and are spared by cisplatin treatment. Proc. Natl. Acad. Sci. USA 106, 16281–16286 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Meng, X., Wang, X. & Wang, Y. More than 45% of A549 and H446 cells are cancer initiating cells: evidence from cloning and tumorigenic analyses. Oncol. Rep. 21, 995–1000 (2009).

    PubMed  Google Scholar 

  47. Chresta, C.M. et al. AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res. 70, 288–298 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Guzmán, C., Bagga, M., Kaur, A., Westermarck, J. & Abankwa, D. ColonyArea: an ImageJ plugin to automatically quantify colony formation in clonogenic assays. PLoS ONE 9, e92444 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Ran, F.A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shalem, O. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343, 84–87 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Schlereth, K. et al. DNA binding cooperativity of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol. Cell 38, 356–368 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B. Vogelstein (John Hopkins University) for providing HCT116 p53−/− cells and A. Filmer for excellent technical assistance with next-generation sequencing. The authors are grateful to the members of the Stiewe laboratory for fruitful discussions and support of the project. This research was supported by Deutsche Forschungsgemeinschaft grants WA 2725/1-1 (M.W.), TRR81 (T.S.), STI 182/3-2 (T.S.) and STI 182/7-1 (T.S.); European Research Council grant P73CANCER 260431 (T.S.); Deutsche Krebshilfe grant 111250 (T.S.); Deutsche José Carreras Leukämie-Stiftung grant (T.S.), Von-Behring-Röntgen-Stiftung grant (T.S.), Rhön Klinikum AG grant (T.S.) and LOEWE Universities of Giessen and Marburg Lung Center grant (T.S.).

Author information

Authors and Affiliations

Authors

Contributions

M.W., J.B.V., M.P.G., N.G., M.H., M.N., J.P.C., J.R.S., J.S. and A.C.B. designed, performed and analyzed experiments. A.N. performed next-generation sequencing. M.M. performed bioinformatic data analysis. R.S. provided critical reagents. M.W. and T.S. wrote the manuscript with advice from all authors. M.W. and T.S. guided all aspects of this study.

Corresponding author

Correspondence to Thorsten Stiewe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results and Supplementary Figures 1–21. (PDF 2676 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wanzel, M., Vischedyk, J., Gittler, M. et al. CRISPR-Cas9–based target validation for p53-reactivating model compounds. Nat Chem Biol 12, 22–28 (2016). https://doi.org/10.1038/nchembio.1965

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1965

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer