Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Imaging and manipulating proteins in live cells through covalent labeling

Abstract

The past 20 years have witnessed the advent of numerous technologies to specifically and covalently label proteins in cellulo and in vivo with synthetic probes. These technologies range from self-labeling proteins tags to non-natural amino acids, and the question is no longer how we can specifically label a given protein but rather with what additional functionality we wish to equip it. In addition, progress in fields such as super-resolution microscopy and genome editing have either provided additional motivation to label proteins with advanced synthetic probes or removed some of the difficulties of conducting such experiments. By focusing on two particular applications, live-cell imaging and the generation of reversible protein switches, we outline the opportunities and challenges of the field and how the synergy between synthetic chemistry and protein engineering will make it possible to conduct experiments that are not feasible with conventional approaches.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1
Figure 2: Live-cell imaging with carboxylated siliconrhodamine (SiR) derivatives.
Figure 3: Super-resolution imaging of microtubules with SiR derivatives.
Figure 4: General scheme for the labeling of a protein of interest through ligand-directed protein labeling.
Figure 5: Reversible semisynthetic protein switches.
Figure 6: Protein switches based on tethered ligands with mutually exclusive binding sites.

References

  1. 1

    Yan, Q. & Bruchez, M.P. Advances in chemical labeling of proteins in living cells. Cell Tissue Res. 360, 179–194 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2

    Jing, C. & Cornish, V.W. Chemical tags for labeling proteins inside living cells. Acc. Chem. Res. 44, 784–792 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3

    Johnsson, N., George, N. & Johnsson, K. Protein chemistry on the surface of living cells. ChemBioChem 6, 47–52 (2005).

    CAS  PubMed  Article  Google Scholar 

  4. 4

    Wang, L. & Schultz, P.G. Expanding the genetic code. Angew. Chem. Int. Ed. Engl. 44, 34–66 (2004).

    PubMed  Article  CAS  Google Scholar 

  5. 5

    Davis, L. & Chin, J.W. Designer proteins: applications of genetic code expansion in cell biology. Nat. Rev. Mol. Cell Biol. 13, 168–182 (2012).

    CAS  Article  Google Scholar 

  6. 6

    Keppler, A. et al. A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat. Biotechnol. 21, 86–89 (2003).

    CAS  Article  Google Scholar 

  7. 7

    Los, G.V. et al. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem. Biol. 3, 373–382 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8

    Borrmann, A. et al. Genetic encoding of a bicyclo[6.1.0]nonyne-charged amino acid enables fast cellular protein imaging by metal-free ligation. ChemBioChem 13, 2094–2099 (2012).

    CAS  PubMed  Article  Google Scholar 

  9. 9

    Lang, K. et al. Genetically encoded norbornene directs site-specific cellular protein labelling via a rapid bioorthogonal reaction. Nat. Chem. 4, 298–304 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10

    Lang, K. et al. Genetic encoding of bicyclononynes and trans-cyclooctenes for site-specific protein labeling in vitro and in live mammalian cells via rapid fluorogenic Diels–Alder reactions. J. Am. Chem. Soc. 134, 10317–10320 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11

    Plass, T. et al. Amino acids for Diels-Alder reactions in living cells. Angew. Chem. Int. Ed. Engl. 51, 4166–4170 (2012).

    CAS  PubMed  Article  Google Scholar 

  12. 12

    Nikić, I. et al. Minimal tags for rapid dual-color live-cell labeling and super-resolution microscopy. Angew. Chem. Int. Ed. Engl. 53, 2245–2249 (2014).

    Article  CAS  Google Scholar 

  13. 13

    Sachdeva, A., Wang, K., Elliott, T. & Chin, J.W. Concerted, rapid, quantitative, and site-specific dual labeling of proteins. J. Am. Chem. Soc. 136, 7785–7788 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14

    Wang, K. et al. Optimized orthogonal translation of unnatural amino acids enables spontaneous protein double-labelling and FRET. Nat. Chem. 6, 393–403 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15

    Machida, T., Lang, K., Xue, L., Chin, J.W. & Winssinger, N. Site-specific glycoconjugation of protein via bioorthogonal tetrazine cycloaddition with a genetically encoded trans-cyclooctene or bicyclononyne. Bioconjug. Chem. 26, 802–806 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16

    Uttamapinant, C. et al. Genetic code expansion enables live-cell and super-resolution imaging of site-specifically labeled cellular proteins. J. Am. Chem. Soc. 137, 4602–4605 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17

    Lukinavičius, G. et al. Selective chemical crosslinking reveals a Cep57-Cep63-Cep152 centrosomal complex. Curr. Biol. 23, 265–270 (2013).

    PubMed  Article  CAS  Google Scholar 

  18. 18

    Doudna, J.A. & Charpentier, E. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096 (2014).

    Article  CAS  Google Scholar 

  19. 19

    Lang, K. & Chin, J.W. Bioorthogonal reactions for labeling proteins. ACS Chem. Biol. 9, 16–20 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20

    Greiss, S. & Chin, J.W. Expanding the genetic code of an animal. J. Am. Chem. Soc. 133, 14196–14199 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21

    Bianco, A., Townsley, F.M., Greiss, S., Lang, K. & Chin, J.W. Expanding the genetic code of Drosophila melanogaster. Nat. Chem. Biol. 8, 748–750 (2012).

    CAS  Article  Google Scholar 

  22. 22

    Albizu, L. et al. Time-resolved FRET between GPCR ligands reveals oligomers in native tissues. Nat. Chem. Biol. 6, 587–594 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23

    Hounsou, C. et al. Time-resolved FRET binding assay to investigate h-oligomer binding properties: proof of concept with dopamine D1/D3 heterodimer. ACS Chem. Biol. 10, 466–474 (2015).

    CAS  PubMed  Article  Google Scholar 

  24. 24

    Oueslati, N. et al. Time-resolved FRET strategy to screen GPCR ligand library. in G Protein-Coupled Receptor Screening Assays Vol. 1272 (eds. Prazeres, D.M.F. & Martins, S.A.M.) 23–36 (Springer New York, 2015).

  25. 25

    Weissleder, R. A clearer vision for in vivo imaging. Nat. Biotechnol. 19, 316–317 (2001).

    CAS  PubMed  Article  Google Scholar 

  26. 26

    Yuan, L., Lin, W., Zheng, K., He, L. & Huang, W. Far-red to near infrared analyte-responsive fluorescent probes based on organic fluorophore platforms for fluorescence imaging. Chem. Soc. Rev. 42, 622–661 (2013).

    CAS  PubMed  Article  Google Scholar 

  27. 27

    Frangioni, J.V. In vivo near-infrared fluorescence imaging. Curr. Opin. Chem. Biol. 7, 626–634 (2003).

    CAS  PubMed  Article  Google Scholar 

  28. 28

    Hilderbrand, S.A. & Weissleder, R. Near-infrared fluorescence: application to in vivo molecular imaging. Curr. Opin. Chem. Biol. 14, 71–79 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29

    Lukinavičius, G. et al. A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins. Nat. Chem. 5, 132–139 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  30. 30

    Fu, M., Xiao, Y., Qian, X., Zhao, D. & Xu, Y. A design concept of long-wavelength fluorescent analogs of rhodamine dyes: replacement of oxygen with silicon atom. Chem. Commun. (Camb.) 2008, 1780–1782 (2008).

  31. 31

    Koide, Y., Urano, Y., Hanaoka, K., Terai, T. & Nagano, T. Evolution of group 14 rhodamines as platforms for near-infrared fluorescence probes utilizing photoinduced electron transfer. ACS Chem. Biol. 6, 600–608 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32

    Koide, Y., Urano, Y., Hanaoka, K., Terai, T. & Nagano, T. Development of an Si-rhodamine-based far-red to near-infrared fluorescence probe selective for hypochlorous acid and its applications for biological imaging. J. Am. Chem. Soc. 133, 5680–5682 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33

    Egawa, T. et al. Development of a far-red to near-infrared fluorescence probe for calcium ion and its application to multicolor neuronal imaging. J. Am. Chem. Soc. 133, 14157–14159 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34

    Yang, G. et al. Genetic targeting of chemical indicators in vivo. Nat. Methods 12, 137–139 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35

    Grimm, J.B. et al. A general method to improve fluorophores for live-cell and single-molecule microscopy. Nat. Methods 12, 244–250 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36

    Erdmann, R.S. et al. Super-resolution imaging of the Golgi in live cells with a bioorthogonal ceramide probe. Angew. Chem. Int. Ed. Engl. 53, 10242–10246 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37

    Lukinavičius, G. et al. SiR–Hoechst is a far-red DNA stain for live-cell nanoscopy. Nat. Commun. 6, 8497 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  38. 38

    Jack, T. et al. Characterizing new fluorescent tools for studying 5–HT3 receptor pharmacology. Neuropharmacology 90, 63–73 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39

    Kim, E., Yang, K.S., Giedt, R.J. & Weissleder, R. Red Si–rhodamine drug conjugates enable imaging in GFP cells. Chem. Commun. (Camb.) 50, 4504–4507 (2014).

    CAS  Article  Google Scholar 

  40. 40

    Lukinavičius, G. et al. Fluorogenic probes for live-cell imaging of the cytoskeleton. Nat. Methods 11, 731–733 (2014).

    PubMed  Article  CAS  Google Scholar 

  41. 41

    Wysocki, L.M. & Lavis, L.D. Advances in the chemistry of small molecule fluorescent probes. Curr. Opin. Chem. Biol. 15, 752–759 (2011).

    CAS  PubMed  Article  Google Scholar 

  42. 42

    Lavis, L.D. & Raines, R.T. Bright building blocks for chemical biology. ACS Chem. Biol. 9, 855–866 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43

    Li, X., Gao, X., Shi, W. & Ma, H. Design strategies for water-soluble small molecular chromogenic and fluorogenic probes. Chem. Rev. 114, 590–659 (2014).

    CAS  PubMed  Article  Google Scholar 

  44. 44

    Liu, T.-K. et al. A rapid SNAP-tag fluorogenic probe based on an environment-sensitive fluorophore for no-wash live cell imaging. ACS Chem. Biol. 9, 2359–2365 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45

    Komatsu, T. et al. Real-time measurements of protein dynamics using fluorescence activation-coupled protein labeling method. J. Am. Chem. Soc. 133, 6745–6751 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46

    Hell, S.W. Nanoscopy with focused light (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 54, 8054–8066 (2015).

    CAS  PubMed  Article  Google Scholar 

  47. 47

    Uno, S.-N. et al. A spontaneously blinking fluorophore based on intramolecular spirocyclization for live-cell super-resolution imaging. Nat. Chem. 6, 681–689 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48

    Deschout, H. et al. Precisely and accurately localizing single emitters in fluorescence microscopy. Nat. Methods 11, 253–266 (2014).

    CAS  Article  Google Scholar 

  49. 49

    Fornasiero, E.F. & Opazo, F. Super-resolution imaging for cell biologists. BioEssays 37, 436–451 (2015).

    PubMed  Article  Google Scholar 

  50. 50

    Tsukiji, S. & Hamachi, I. Ligand-directed tosyl chemistry for in situ native protein labeling and engineering in living systems: from basic properties to applications. Curr. Opin. Chem. Biol. 21, 136–143 (2014).

    CAS  PubMed  Article  Google Scholar 

  51. 51

    Takaoka, Y., Ojida, A. & Hamachi, I. Protein organic chemistry and applications for labeling and engineering in live-cell systems. Angew. Chem. Int. Ed. Engl. 52, 4088–4106 (2013).

    CAS  PubMed  Article  Google Scholar 

  52. 52

    Hayashi, T. & Hamachi, I. Traceless affinity labeling of endogenous proteins for functional analysis in living cells. Acc. Chem. Res. 45, 1460–1469 (2012).

    CAS  PubMed  Article  Google Scholar 

  53. 53

    Miki, T. et al. LDAI-based chemical labeling of intact membrane proteins and its pulse-chase analysis under live cell conditions. Chem. Biol. 21, 1013–1022 (2014).

    CAS  Article  Google Scholar 

  54. 54

    Krishnamurthy, V.M., Semetey, V., Bracher, P.J., Shen, N. & Whitesides, G.M. Dependence of effective molarity on linker length for an intramolecular protein−ligand system. J. Am. Chem. Soc. 129, 1312–1320 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55

    Zhou, H.-X. Quantitative relation between intermolecular and intramolecular binding of Pro-rich peptides to SH3 domains. Biophys. J. 91, 3170–3181 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56

    Zheng, Q. et al. Ultra-stable organic fluorophores for single-molecule research. Chem. Soc. Rev. 43, 1044–1056 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57

    Erazo-Oliveras, A. et al. Protein delivery into live cells by incubation with an endosomolytic agent. Nat. Methods 11, 861–867 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. 58

    Stein, V. & Alexandrov, K. Synthetic protein switches: design principles and applications. Trends Biotechnol. 33, 101–110 (2015).

    CAS  Article  Google Scholar 

  59. 59

    Szymański, W., Beierle, J.M., Kistemaker, H.A.V., Velema, W.A. & Feringa, B.L. Reversible photocontrol of biological systems by the incorporation of molecular photoswitches. Chem. Rev. 113, 6114–6178 (2013).

    Article  CAS  Google Scholar 

  60. 60

    Banghart, M., Borges, K., Isacoff, E., Trauner, D. & Kramer, R.H. Light-activated ion channels for remote control of neuronal firing. Nat. Neurosci. 7, 1381–1386 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. 61

    Gorostiza, P. et al. Mechanisms of photoswitch conjugation and light activation of an ionotropic glutamate receptor. Proc. Natl. Acad. Sci. USA 104, 10865–10870 (2007).

    CAS  Article  Google Scholar 

  62. 62

    Numano, R. et al. Nanosculpting reversed wavelength sensitivity into a photoswitchable iGluR. Proc. Natl. Acad. Sci. USA 106, 6814–6819 (2009).

    CAS  Article  Google Scholar 

  63. 63

    Volgraf, M. et al. Allosteric control of an ionotropic glutamate receptor with an optical switch. Nat. Chem. Biol. 2, 47–52 (2006).

    CAS  Article  Google Scholar 

  64. 64

    Caporale, N. et al. LiGluR restores visual responses in rodent models of inherited blindness. Mol. Ther. 19, 1212–1219 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. 65

    Levitz, J. et al. Optical control of metabotropic glutamate receptors. Nat. Neurosci. 16, 507–516 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. 66

    Wyart, C. et al. Optogenetic dissection of a behavioural module in the vertebrate spinal cord. Nature 461, 407–410 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. 67

    Tsai, Y.-H., Essig, S., James, J.R., Lang, K. & Chin, J.W. Selective, rapid and optically switchable regulation of protein function in live mammalian cells. Nat. Chem. 7, 554–561 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. 68

    Broichhagen, J., Frank, J.A. & Trauner, D. A roadmap to success in photopharmacology. Acc. Chem. Res. 48, 1947–1960 (2015).

    CAS  Article  Google Scholar 

  69. 69

    Masharina, A., Reymond, L., Maurel, D., Umezawa, K. & Johnsson, K. A Fluorescent sensor for GABA and synthetic GABA B receptor ligands. J. Am. Chem. Soc. 134, 19026–19034 (2012).

    CAS  Article  Google Scholar 

  70. 70

    Brun, M.A. et al. Semisynthesis of fluorescent metabolite sensors on cell surfaces. J. Am. Chem. Soc. 133, 16235–16242 (2011).

    CAS  Article  Google Scholar 

  71. 71

    Brun, M.A. et al. A semisynthetic fluorescent sensor protein for glutamate. J. Am. Chem. Soc. 134, 7676–7678 (2012).

    CAS  Article  Google Scholar 

  72. 72

    Schena, A. & Johnsson, K. Sensing acetylcholine and anticholinesterase compounds. Angew. Chem. Int. Ed. Engl. 53, 1302–1305 (2014).

    CAS  PubMed  Article  Google Scholar 

  73. 73

    Griss, R. et al. Bioluminescent sensor proteins for point-of-care therapeutic drug monitoring. Nat. Chem. Biol. 10, 598–603 (2014).

    CAS  Article  Google Scholar 

  74. 74

    Schena, A., Griss, R. & Johnsson, K. Modulating protein activity using tethered ligands with mutually exclusive binding sites. Nat. Commun. 6, 7830 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

The Johnsson laboratory acknowledges support from the Swiss National Science Foundation and the NCCR Chemical Biology. The authors are grateful to P. Heppenstall (EMBL Monterotondo) and G. Lukinavicius (EPFL) for providing images. I.A.K. acknowledges funding through an EMBO Long-Term Fellowship (ALTF 302-2015) co-funded by Marie Curie Action (LTFCOFUND2013, GA-2013-609409).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kai Johnsson.

Ethics declarations

Competing interests

K.J. has filed and licensed out patent applications on different protein labeling technologies and fluorophores that are mentioned in this article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xue, L., Karpenko, I., Hiblot, J. et al. Imaging and manipulating proteins in live cells through covalent labeling. Nat Chem Biol 11, 917–923 (2015). https://doi.org/10.1038/nchembio.1959

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing