Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rapid selection of cyclic peptides that reduce α-synuclein toxicity in yeast and animal models

Abstract

Phage display has demonstrated the utility of cyclic peptides as general protein ligands but cannot access proteins inside eukaryotic cells. Expanding a new chemical genetics tool, we describe the first expressed library of head-to-tail cyclic peptides in yeast (Saccharomyces cerevisiae). We applied the library to selections in a yeast model of α-synuclein toxicity that recapitulates much of the cellular pathology of Parkinson's disease. From a pool of 5 million transformants, we isolated two related cyclic peptide constructs that specifically reduced the toxicity of human α-synuclein. These expressed cyclic peptide constructs also prevented dopaminergic neuron loss in an established Caenorhabditis elegans Parkinson's model. This work highlights the speed and efficiency of using libraries of expressed cyclic peptides for forward chemical genetics in cellular models of human disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A cyclic peptide library that expresses and processes in yeast.
Figure 2: Identification of two CPs that selectively reduce α-synuclein toxicity in yeast.
Figure 3: Rapid generation of structure–activity relationship data and rapid minimization using point mutagenesis.
Figure 4: Selected CPs operate downstream of known vesicle trafficking defects.
Figure 5: Selected CPs reduce α-syn-mediated toxicity in C. elegans dopaminergic neurons.

Similar content being viewed by others

References

  1. Driggers, E.M., Hale, S.P., Lee, J. & Terrett, N.K. The exploration of macrocycles for drug discovery — an underexploited structural class. Nat. Rev. Drug Discov. 7, 608–624 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Burja, A.M., Banaigs, B., Abou-Mansour, E., Burgess, J.G. & Wright, P.C. Marine cyanobacteria—a prolific source of natural products. Tetrahedron 57, 9347–9377 (2001).

    Article  CAS  Google Scholar 

  3. Wilson, D.S., Keefe, A.D. & Szostak, J.W. The use of mRNA display to select high-affinity protein-binding peptides. Proc. Natl. Acad. Sci. USA 98, 3750–3755 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kehoe, J.W. & Kay, B.K. Filamentous phage display in the new millennium. Chem. Rev. 105, 4056–4072 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Scott, C.P., Abel-Santos, E., Wall, M., Wahnon, D.C. & Benkovic, S.J. Production of cyclic peptides and proteins in vivo. Proc. Natl. Acad. Sci. USA 96, 13638–13643 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Horswill, A.R., Savinov, S.N. & Benkovic, S.J. A systematic method for identifying small-molecule modulators of protein-protein interactions. Proc. Natl. Acad. Sci. USA 101, 15591–15596 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Horswill, A.R. & Benkovic, S.J. Cyclic peptides, a chemical genetics tool for biologists. Cell Cycle 4, 552–555 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Scott, C.P., Abel-Santos, E., Jones, A.D. & Benkovic, S.J. Structural requirements for the biosynthesis of backbone cyclic peptide libraries. Chem. Biol. 8, 801–815 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Tavassoli, A. et al. Inhibition of HIV budding by a genetically selected cyclic peptide targeting the Gag-TSG101 interaction. ACS Chem. Biol. 3, 757–764 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Cheng, L. et al. Discovery of antibacterial cyclic peptides that inhibit the ClpXP protease. Protein Sci. 16, 1535–1542 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nilsson, L.O., Louassini, M. & Abel-Santos, E. Using siclopps for the discovery of novel antimicrobial peptides and their targets. Protein Pept. Lett. 12, 795–799 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kinsella, T.M. et al. Retrovirally delivered random cyclic peptide libraries yield inhibitors of interleukin-4 signaling in human B cells. J. Biol. Chem. 277, 37512–37518 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Winderickx, J. et al. Protein folding diseases and neurodegeneration: lessons learned from yeast. Biochim. Biophys. Acta 1783, 1381–1395 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Duennwald, M.L., Jagadish, S., Muchowski, P.J. & Lindquist, S. Flanking sequences profoundly alter polyglutamine toxicity in yeast. Proc. Natl. Acad. Sci. USA 103, 11045–11050 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Willingham, S., Outeiro, T.F., DeVit, M.J., Lindquist, S.L. & Muchowski, P.J. Yeast genes that enhance the toxicity of a mutant huntingtin fragment or α-synuclein. Science 302, 1769–1772 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Outeiro, T.F. & Lindquist, S. Yeast cells provide insight into alpha-synuclein biology and pathobiology. Science 302, 1772–1775 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cooper, A.A. et al. α-Synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson's models. Science 313, 324–328 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gitler, A.D. et al. The Parkinson's disease protein alpha-synuclein disrupts cellular Rab homeostasis. Proc. Natl. Acad. Sci. USA 105, 145–150 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Polymeropoulos, M.H. et al. Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science 276, 2045–2047 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Spillantini, M.G. et al. α-Synuclein in Lewy bodies. Nature 388, 839–840 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Lee, V.M.Y. & Trojanowski, J.Q. Mechanisms of Parkinson's disease linked to pathological alpha-synuclein: new targets for drug discovery. Neuron 52, 33–38 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Gitler, A.D. et al. α-Synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity. Nat. Genet. 41, 308–315 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ramirez, A. et al. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat. Genet. 38, 1184–1191 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Evans, T.C. Jr. & Xu, M.-Q. Mechanistic and kinetic considerations of protein splicing. Chem. Rev. 102, 4869–4883 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Ghosh, I., Sun, L. & Xu, M.-Q. Zincinhibition of protein trans-splicing and identification of regions essential for splicing and association of a split intein. J. Biol. Chem. 276, 24051–24058 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Sun, P. et al. Crystal structures of an intein from the split dnaE gene of Synechocystis sp. PCC6803 reveal the catalytic model without the penultimate histidine and the mechanism of zinc ion inhibition of protein splicing. J. Mol. Biol. 353, 1093–1105 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Naumann, T.A., Savinov, S.N. & Benkovic, S.J. Engineering an affinity tag for genetically encoded cyclic peptides. Biotechnol. Bioeng. 92, 820–830 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Tavassoli, A. & Benkovic, S.J. Split-intein mediated circular ligation used in the synthesis of cyclic peptide libraries in E. coli. Nat. Protoc. 2, 1126–1133 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Bickle, M.B.T., Dusserre, E., Moncorge, O., Bottin, H. & Colas, P. Selection and characterization of large collections of peptide aptamers through optimized yeast two-hybrid procedures. Nat. Protoc. 1, 1066–1091 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Yocum, R.R., Hanley, S., West, R. & Ptashne, M. Use of lacZ fusions to delimit regulatory elements of the inducible divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae. Mol. Cell. Biol. 4, 1985–1998 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Outeiro, T.F. et al. Sirtuin 2 inhibitors rescue alpha-synuclein-mediated toxicity in models of Parkinson's disease. Science 317, 516–519 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Ding, Y. et al. Crystal structure of a mini-intein reveals a conserved catalytic module involved in side chain cyclization of asparagine during protein splicing. J. Biol. Chem. 278, 39133–39142 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Burdine, L. & Kodadek, T. Target identification in chemical genetics: the (often) missing link. Chem. Biol. 11, 593–597 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Tavassoli, A. & Benkovic, S.J. Genetically selected cyclic-peptide inhibitors of AICAR transformylase homodimerization. Angew. Chem. Int. Ed. Engl. 44, 2760–2763 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Cao, S., Gelwix, C.C., Caldwell, K.A. & Caldwell, G.A. Torsin-mediated protection from cellular stress in the dopaminergic neurons of Caenorhabditis elegans. J. Neurosci. 25, 3801–3812 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hamamichi, S. et al. Hypothesis-based RNAi screening identifies neuroprotective genes in a Parkinson's disease model. Proc. Natl. Acad. Sci. USA 105, 728–733 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ellgaard, L. & Ruddock, L.W. The human protein disulphide isomerase family: substrate interactions and functional properties. EMBO Rep. 6, 28–32 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Abou-Sleiman, P.M., Muqit, M.M.K. & Wood, N.W. Expanding insights of mitochondrial dysfunction in Parkinson's disease. Nat. Rev. Neurosci. 7, 207–219 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Cabrele, C., Fiori, S., Pegoraro, S. & Moroder, L. Redox-active cyclic bis(cysteinyl)peptides as catalysts for in vitro oxidative protein folding. Chem. Biol. 9, 731–740 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Kersteen, E.A. & Raines, R.T. Catalysis of protein folding by protein disulfide isomerase and small-molecule mimics. Antioxid. Redox Signal. 5, 413–424 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Olanow, C.W. Manganese-induced parkinsonism and Parkinson's disease. in Redox-Active Metals in Neurological Disorders vol. 1012 (ed. LeVine, S.M.) 209–223 (New York Academy of Sciences, New York, 2004).

    Google Scholar 

  42. Hoon, S. et al. An integrated platform of genomic assays reveals small-molecule bioactivities. Nat. Chem. Biol. 4, 498–506 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. van der Putten, H. et al. Neuropathology in mice expressing human alpha-synuclein. J. Neurosci. 20, 6021–6029 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rual, J.F. et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature 437, 1173–1178 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Yu, H. et al. High-quality binary protein interaction map of the yeast interactome network. Science 322, 104–110 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li, S. et al. A map of the interactome network of the metazoan C. elegans. Science 303, 540–543 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Brenner, S. Genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Nass, R., Hall, D.H., Miller, D.M. & Blakely, R.D. Neurotoxin-induced degeneration of dopamine neurons in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 99, 3264–3269 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Benkovic (Pennsylvania State University) for plasmids, E. Spooner for mass spectrometry assistance and N. Azubuine for preparation of media. This work was supported by a National Research Service Award fellowship from the US National Institute of Neurological Disorders and Stroke (NINDS) and National Institute on Aging (J.A.K.), an R21 grant from NINDS (S.L. and J.A.K.) and the Morris K. Udall Centers of Excellence for Parkinson's Disease Research (S.L.) Parkinson's disease research in the Caldwell Lab (G.A.C, K.A.C., S.H.) was supported by the American Parkinson Disease Association, Michael J. Fox Foundation and US National Institute of Environmental Health Sciences.

Author information

Authors and Affiliations

Authors

Contributions

J.A.K. conceived the overall strategy, tested the construct in yeast, designed and constructed the library, performed the selections and all subsequent experiments in yeast, constructed the metazoan CP construct and worm expression plasmids and wrote the manuscript. S.H. constructed the worm lines, designed and performed the worm experiments, analyzed worm data and wrote the manuscript. J.M.M. processed and imaged yeast by electron microscopy. S.S. contributed to the design of the metazoan CP construct. T.A.N. designed and tested the HPQ yeast CP construct. K.A.C. analyzed worm data and wrote the manuscript. G.A.C. designed the worm experiments, analyzed worm data and wrote the manuscript. S.L. suggested the approach, provided advice and suggestions throughout and supervised the project.

Corresponding author

Correspondence to Susan Lindquist.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Tables 1–2, Supplementary Results and Supplementary Methods (PDF 296 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kritzer, J., Hamamichi, S., McCaffery, J. et al. Rapid selection of cyclic peptides that reduce α-synuclein toxicity in yeast and animal models. Nat Chem Biol 5, 655–663 (2009). https://doi.org/10.1038/nchembio.193

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.193

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing