Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Host-directed drug therapy for tuberculosis

Chemical compounds designed to enhance understanding of host-pathogen interaction together with next-generation 'smart drugs' will rationally drive the discovery of promising new host-directed targets against pathogens including Mycobacterium tuberculosis, the causative agent of tuberculosis.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Mtb host-evasion mechanism and potential host cellular cytosolic protein-directed targets.

MARINA CORRAL SPENCE/NATURE PUBLISHING GROUP

Figure 2: Potential epigenomic, miRNA and lncRNA host-directed targets against Mtb.

MARINA CORRAL SPENCE/NATURE PUBLISHING GROUP

References

  1. 1

    Gatfield, J. & Pieters, J. Science 288, 1647–1650 (2000).

    CAS  Article  Google Scholar 

  2. 2

    Houben, D. et al. Cell. Microbiol. 14, 1287–1298 (2012).

    CAS  Article  Google Scholar 

  3. 3

    Wang, J. et al. Nat. Immunol. 16, 237–245 (2015).

    CAS  Article  Google Scholar 

  4. 4

    Li, J. et al. J. Immunol. 194, 3756–3767 (2015).

    CAS  Article  Google Scholar 

  5. 5

    Ng, V.H., Cox, J.S., Sousa, A.O., MacMicking, J.D. & McKinney, J.D. Mol. Microbiol. 52, 1291–1302 (2004).

    CAS  Article  Google Scholar 

  6. 6

    Maloney, E. et al. PLoS Pathog. 5, e1000534 (2009).

    Article  Google Scholar 

  7. 7

    Kim, K.H et al. Proc. Natl. Acad. Sci. USA 109, 7729–7734 (2012).

    CAS  Article  Google Scholar 

  8. 8

    Pennini, M.E., Pai, R.K., Schultz, D.C., Boom, W.H. & Harding, C.V. J. Immunol. 176, 4323–4330 (2006).

    CAS  Article  Google Scholar 

  9. 9

    Wallis, R.S. & Hafner, R. Nat. Rev. Immunol. 15, 255–263 (2015).

    CAS  Article  Google Scholar 

  10. 10

    Hawn, T.R., Shah, J.A. & Kalman, D. Immunol. Rev. 264, 344–362 (2015).

    CAS  Article  Google Scholar 

  11. 11

    Peyron, P. et al. PLoS Pathog. 4, e1000204 (2008).

    Article  Google Scholar 

  12. 12

    Liappis, A.P., Kan, V.L., Rochester, C.G. & Simon, G.L. Clin. Infect. Dis. 33, 1352–1357 (2001).

    CAS  Article  Google Scholar 

  13. 13

    Parihar, S.P. et al. J. Infect. Dis. 209, 754–763 (2014).

    CAS  Article  Google Scholar 

  14. 14

    Parihar, S.P. et al. PLoS ONE 8, e75490 (2013).

    CAS  Article  Google Scholar 

  15. 15

    Singhal, A. et al. Sci. Transl. Med. 6, 263ra159 (2014).

    Article  Google Scholar 

  16. 16

    Sharma, G., Upadhyay, S., Srilalitha, M., Nandicoori, V.K. & Khosla, S. Nucleic Acids Res. 43, 3922–3937 (2015).

    CAS  Article  Google Scholar 

  17. 17

    Yi, Z., Fu, Y., Ji, R., Li, R. & Guan, Z. PLoS ONE 7, e43184 (2012).

    CAS  Article  Google Scholar 

  18. 18

    Iannaccone, M., Dorhoi, A. & Kaufmann, S.H. Expert Opin. Ther. Targets 18, 491–494 (2014).

    CAS  Article  Google Scholar 

  19. 19

    Yu, A.D., Wang, Z. & Morris, K.V. Immunol. Cell Biol. 93, 277–283 (2015).

    CAS  Article  Google Scholar 

  20. 20

    Barichievy, S., Naidoo, J. & Mhlanga, M.M. Front. Genet. 6, 108 (2015).

    Article  Google Scholar 

  21. 21

    Forrest, A.R. et al. Nature 507, 462–470 (2014).

    CAS  Article  Google Scholar 

  22. 22

    Arner, E. et al. Science 347, 1010–1014 (2015).

    CAS  Article  Google Scholar 

  23. 23

    Roy, S. et al. Nucleic Acids Res. 43, 6969–6982 (2015).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank M. Ozturk and O. Tamgue for critical reading of the manuscript. This work was supported by a National Research Foundation (NRF) of South Africa grant and by the Department of Science and Technology (DST), South African Research Chair Initiative, South African Medical Research Council (SAMRC), the NRF Competitive Programme for Unrated Researchers, DST/NRF Collaborative Postgraduate Training Programme and SAMRC Self-initiated Research Grant.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Frank Brombacher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guler, R., Brombacher, F. Host-directed drug therapy for tuberculosis. Nat Chem Biol 11, 748–751 (2015). https://doi.org/10.1038/nchembio.1917

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing