Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Host-directed drug therapy for tuberculosis

Chemical compounds designed to enhance understanding of host-pathogen interaction together with next-generation 'smart drugs' will rationally drive the discovery of promising new host-directed targets against pathogens including Mycobacterium tuberculosis, the causative agent of tuberculosis.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mtb host-evasion mechanism and potential host cellular cytosolic protein-directed targets.

MARINA CORRAL SPENCE/NATURE PUBLISHING GROUP

Figure 2: Potential epigenomic, miRNA and lncRNA host-directed targets against Mtb.

MARINA CORRAL SPENCE/NATURE PUBLISHING GROUP

References

  1. Gatfield, J. & Pieters, J. Science 288, 1647–1650 (2000).

    Article  CAS  Google Scholar 

  2. Houben, D. et al. Cell. Microbiol. 14, 1287–1298 (2012).

    Article  CAS  Google Scholar 

  3. Wang, J. et al. Nat. Immunol. 16, 237–245 (2015).

    Article  CAS  Google Scholar 

  4. Li, J. et al. J. Immunol. 194, 3756–3767 (2015).

    Article  CAS  Google Scholar 

  5. Ng, V.H., Cox, J.S., Sousa, A.O., MacMicking, J.D. & McKinney, J.D. Mol. Microbiol. 52, 1291–1302 (2004).

    Article  CAS  Google Scholar 

  6. Maloney, E. et al. PLoS Pathog. 5, e1000534 (2009).

    Article  Google Scholar 

  7. Kim, K.H et al. Proc. Natl. Acad. Sci. USA 109, 7729–7734 (2012).

    Article  CAS  Google Scholar 

  8. Pennini, M.E., Pai, R.K., Schultz, D.C., Boom, W.H. & Harding, C.V. J. Immunol. 176, 4323–4330 (2006).

    Article  CAS  Google Scholar 

  9. Wallis, R.S. & Hafner, R. Nat. Rev. Immunol. 15, 255–263 (2015).

    Article  CAS  Google Scholar 

  10. Hawn, T.R., Shah, J.A. & Kalman, D. Immunol. Rev. 264, 344–362 (2015).

    Article  CAS  Google Scholar 

  11. Peyron, P. et al. PLoS Pathog. 4, e1000204 (2008).

    Article  Google Scholar 

  12. Liappis, A.P., Kan, V.L., Rochester, C.G. & Simon, G.L. Clin. Infect. Dis. 33, 1352–1357 (2001).

    Article  CAS  Google Scholar 

  13. Parihar, S.P. et al. J. Infect. Dis. 209, 754–763 (2014).

    Article  CAS  Google Scholar 

  14. Parihar, S.P. et al. PLoS ONE 8, e75490 (2013).

    Article  CAS  Google Scholar 

  15. Singhal, A. et al. Sci. Transl. Med. 6, 263ra159 (2014).

    Article  Google Scholar 

  16. Sharma, G., Upadhyay, S., Srilalitha, M., Nandicoori, V.K. & Khosla, S. Nucleic Acids Res. 43, 3922–3937 (2015).

    Article  CAS  Google Scholar 

  17. Yi, Z., Fu, Y., Ji, R., Li, R. & Guan, Z. PLoS ONE 7, e43184 (2012).

    Article  CAS  Google Scholar 

  18. Iannaccone, M., Dorhoi, A. & Kaufmann, S.H. Expert Opin. Ther. Targets 18, 491–494 (2014).

    Article  CAS  Google Scholar 

  19. Yu, A.D., Wang, Z. & Morris, K.V. Immunol. Cell Biol. 93, 277–283 (2015).

    Article  CAS  Google Scholar 

  20. Barichievy, S., Naidoo, J. & Mhlanga, M.M. Front. Genet. 6, 108 (2015).

    Article  Google Scholar 

  21. Forrest, A.R. et al. Nature 507, 462–470 (2014).

    Article  CAS  Google Scholar 

  22. Arner, E. et al. Science 347, 1010–1014 (2015).

    Article  CAS  Google Scholar 

  23. Roy, S. et al. Nucleic Acids Res. 43, 6969–6982 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Ozturk and O. Tamgue for critical reading of the manuscript. This work was supported by a National Research Foundation (NRF) of South Africa grant and by the Department of Science and Technology (DST), South African Research Chair Initiative, South African Medical Research Council (SAMRC), the NRF Competitive Programme for Unrated Researchers, DST/NRF Collaborative Postgraduate Training Programme and SAMRC Self-initiated Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Brombacher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guler, R., Brombacher, F. Host-directed drug therapy for tuberculosis. Nat Chem Biol 11, 748–751 (2015). https://doi.org/10.1038/nchembio.1917

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1917

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research