Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Monobody-mediated alteration of enzyme specificity

Abstract

Current methods for engineering enzymes modify enzymes themselves and require a detailed mechanistic understanding or a high-throughput assay. Here, we describe a new approach where catalytic properties are modulated with synthetic binding proteins, termed monobodies, directed to an unmodified enzyme. Using the example of a β-galactosidase from Bacillus circulans, we efficiently identified monobodies that restricted its substrates for its transgalactosylation reaction and selectively enhanced the production of small oligosaccharide prebiotics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Modulation of enzyme catalytic properties with synthetic binding proteins.
Figure 2: Monobodies modulate catalytic properties of BgaD-D.

Similar content being viewed by others

Accession codes

Primary accessions

NCBI Reference Sequence

References

  1. Wilks, H.M. et al. Science 242, 1541–1544 (1988).

    Article  CAS  Google Scholar 

  2. Chen, K.Q. & Arnold, F.H. BioTechnology 9, 1073–1077 (1991).

    Article  CAS  Google Scholar 

  3. Bornscheuer, U.T. et al. Nature 485, 185–194 (2012).

    Article  CAS  Google Scholar 

  4. Davids, T., Schmidt, M., Bottcher, D. & Bornscheuer, U.T. Curr. Opin. Chem. Biol. 17, 215–220 (2013).

    Article  CAS  Google Scholar 

  5. Goldsmith, M. & Tawfik, D.S. Curr. Opin. Struct. Biol. 22, 406–412 (2012).

    Article  CAS  Google Scholar 

  6. Mak, W.S. & Siegel, J.B. Curr. Opin. Struct. Biol. 27, 87–94 (2014).

    Article  CAS  Google Scholar 

  7. Song, J. et al. Biosci. Biotechnol. Biochem. 75, 1194–1197 (2011).

    Article  CAS  Google Scholar 

  8. Barile, D. & Rastall, R.A. Curr. Opin. Biotechnol. 24, 214–219 (2013).

    Article  CAS  Google Scholar 

  9. Bultema, J.B., Kuipers, B.J. & Dijkhuizen, L. FEBS Open Bio 4, 1015–1020 (2014).

    Article  CAS  Google Scholar 

  10. Song, J. et al. Biosci. Biotechnol. Biochem. 75, 268–278 (2011).

    Article  CAS  Google Scholar 

  11. Ishikawa, K. et al. FEBS J. 282, 2540–2552 (2015).

    Article  CAS  Google Scholar 

  12. Strokopytov, B. et al. Biochemistry 34, 2234–2240 (1995).

    Article  CAS  Google Scholar 

  13. Vocadlo, D.J., Davies, G.J., Laine, R. & Withers, S.G. Nature 412, 835–838 (2001).

    Article  CAS  Google Scholar 

  14. Blake, C.C. et al. Proc. R. Soc. Lond. B Biol. Sci. 167, 378–388 (1967).

    Article  CAS  Google Scholar 

  15. Davies, G.J., Wilson, K.S. & Henrissat, B. Biochem. J. 321, 557–559 (1997).

    Article  CAS  Google Scholar 

  16. van der Veen, B.A. et al. J. Mol. Biol. 296, 1027–1038 (2000).

    Article  CAS  Google Scholar 

  17. Chen-Goodspeed, M., Sogorb, M.A., Wu, F. & Raushel, F.M. Biochemistry 40, 1332–1339 (2001).

    Article  CAS  Google Scholar 

  18. Schmitt, J., Brocca, S., Schmid, R.D. & Pleiss, J. Protein Eng. 15, 595–601 (2002).

    Article  CAS  Google Scholar 

  19. Koide, A., Bailey, C.W., Huang, X. & Koide, S. J. Mol. Biol. 284, 1141–1151 (1998).

    Article  CAS  Google Scholar 

  20. Koide, A., Wojcik, J., Gilbreth, R.N., Hoey, R.J. & Koide, S. J. Mol. Biol. 415, 393–405 (2012).

    Article  CAS  Google Scholar 

  21. Wojcik, J. et al. Nat. Struct. Mol. Biol. 17, 519–527 (2010).

    Article  CAS  Google Scholar 

  22. Gilbreth, R.N. et al. Proc. Natl. Acad. Sci. USA 108, 7751–7756 (2011).

    Article  CAS  Google Scholar 

  23. Sha, F. et al. Proc. Natl. Acad. Sci. USA 110, 14924–14929 (2013).

    Article  CAS  Google Scholar 

  24. Albayrak, N. & Yang, S.T. Biotechnol. Bioeng. 77, 8–19 (2002).

    Article  CAS  Google Scholar 

  25. Li, S., Yang, X., Yang, S., Zhu, M. & Wang, X. Comput Struct. Biotechnol. J. 2, e201209017 (2012).

    Article  Google Scholar 

  26. Koide, A., Gilbreth, R.N., Esaki, K., Tereshko, V. & Koide, S. Proc. Natl. Acad. Sci. USA 104, 6632–6637 (2007).

    Article  CAS  Google Scholar 

  27. Larkin, M.A. et al. Bioinformatics 23, 2947–2948 (2007).

    Article  CAS  Google Scholar 

  28. Goujon, M. et al. Nucleic Acids Res. 38, W695–W699 (2010).

    Article  CAS  Google Scholar 

  29. Koide, S., Koide, A. & Lipovsek, D. Methods Enzymol. 503, 135–156 (2012).

    Article  CAS  Google Scholar 

  30. Nishikori, S. et al. J. Mol. Biol. 424, 391–399 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the use of the University of Chicago Genomics Core, which is supported by US National Institutes of Health grant P30CA014599 to the University of Chicago Comprehensive Cancer Center.

Author information

Authors and Affiliations

Authors

Contributions

S.T. and S. Koide designed the research. S.T. and A.K. generated and characterized the monobodies. S.T. and T.T. analyzed effects of the monobodies on enzyme reactions. T.T. and S.I. conducted mutagenesis analysis of BgaD. S. Koikeda and S. Koide supervised the research. S.T. and S. Koide wrote the manuscript and the other authors commented on it.

Corresponding author

Correspondence to Shohei Koide.

Ethics declarations

Competing interests

S. Tanaka, T. Takahashi, S. Ishihara and S. Koikeda are employees of Amano Enzyme that manufactures the Biolacta enzyme. S. Tanaka, T. Takahashi and S. Koikeda are shareholders of Amano Enzyme. The University of Chicago has filed a patent application on technologies described in this paper.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–8 and Supplementary Table 1. (PDF 2143 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, Si., Takahashi, T., Koide, A. et al. Monobody-mediated alteration of enzyme specificity. Nat Chem Biol 11, 762–764 (2015). https://doi.org/10.1038/nchembio.1896

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1896

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing