Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

N-terminal domains mediate [2Fe-2S] cluster transfer from glutaredoxin-3 to anamorsin

Abstract

In eukaryotes, cytosolic monothiol glutaredoxins are proteins implicated in intracellular iron trafficking and sensing via their bound [2Fe-2S] clusters. We define a new role of human cytosolic monothiol glutaredoxin-3 (GRX3) in transferring its [2Fe-2S] clusters to human anamorsin, a physical and functional protein partner of GRX3 in the cytosol, whose [2Fe-2S] cluster–bound form is involved in the biogenesis of cytosolic and nuclear Fe-S proteins. Specific protein recognition between the N-terminal domains of the two proteins is the mandatory requisite to promote the [2Fe-2S] cluster transfer from GRX3 to anamorsin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cluster transfer from GRX3 to anamorsin.
Figure 2: Impaired cluster transfer and no protein-protein interaction between GRX3(GrxA/B) and anamorsin.
Figure 3: Apo-GRX3 and apo-anamorsin specifically recognize each other via their N-terminal domains.
Figure 4: N domains of apo-GRX3 and of apo-anamorsin form a heterodimer stabilized through the unstructured linker of anamorsin.
Figure 5: Working model for the functional role of cluster transfer from GRX3 to anamorsin in iron metabolism.

Similar content being viewed by others

Accession codes

Accessions

Swiss-Prot

References

  1. Banci, L. et al. [2Fe-2S] cluster transfer in iron-sulfur protein biogenesis. Proc. Natl. Acad. Sci. USA 111, 6203–6208 (2014).

    Article  CAS  Google Scholar 

  2. Haunhorst, P., Berndt, C., Eitner, S., Godoy, J.R. & Lillig, C.H. Characterization of the human monothiol glutaredoxin 3 (PICOT) as iron-sulfur protein. Biochem. Biophys. Res. Commun. 394, 372–376 (2010).

    Article  CAS  Google Scholar 

  3. Lill, R. et al. The role of mitochondria in cellular iron-sulfur protein biogenesis and iron metabolism. Biochim. Biophys. Acta 1823, 1491–1508 (2012).

    Article  CAS  Google Scholar 

  4. Uzarska, M.A., Dutkiewicz, R., Freibert, S.A., Lill, R. & Muhlenhoff, U. The mitochondrial Hsp70 chaperone Ssq1 facilitates Fe/S cluster transfer from Isu1 to Grx5 by complex formation. Mol. Biol. Cell 24, 1830–1841 (2013).

    Article  CAS  Google Scholar 

  5. Mapolelo, D.T. et al. Monothiol glutaredoxins and A-type proteins: partners in Fe-S cluster trafficking. Dalton Trans. 42, 3107–3115 (2013).

    Article  CAS  Google Scholar 

  6. Shakamuri, P., Zhang, B. & Johnson, M.K. Monothiol glutaredoxins function in storing and transporting [Fe2S2] clusters assembled on IscU scaffold proteins. J. Am. Chem. Soc. 134, 15213–15216 (2012).

    Article  CAS  Google Scholar 

  7. Philpott, C.C. Coming into view: eukaryotic iron chaperones and intracellular iron delivery. J. Biol. Chem. 287, 13518–13523 (2012).

    Article  CAS  Google Scholar 

  8. Mühlenhoff, U. et al. Cytosolic monothiol glutaredoxins function in intracellular iron sensing and trafficking via their bound iron-sulfur cluster. Cell Metab. 12, 373–385 (2010).

    Article  Google Scholar 

  9. Haunhorst, P. et al. Crucial function of vertebrate glutaredoxin 3 (PICOT) in iron homeostasis and hemoglobin maturation. Mol. Biol. Cell 24, 1895–1903 (2013).

    Article  CAS  Google Scholar 

  10. Poor, C.B. et al. Molecular mechanism and structure of the Saccharomyces cerevisiae iron regulator Aft2. Proc. Natl. Acad. Sci. USA 111, 4043–4048 (2014).

    Article  CAS  Google Scholar 

  11. Yamaguchi-Iwai, Y., Stearman, R., Dancis, A. & Klausner, R.D. Iron-regulated DNA binding by the AFT1 protein controls the iron regulon in yeast. EMBO J. 15, 3377–3384 (1996).

    Article  CAS  Google Scholar 

  12. Rutherford, J.C., Jaron, S., Ray, E., Brown, P.O. & Winge, D.R. A second iron-regulatory system in yeast independent of Aft1p. Proc. Natl. Acad. Sci. USA 98, 14322–14327 (2001).

    Article  CAS  Google Scholar 

  13. Blaiseau, P.L., Lesuisse, E. & Camadro, J.M. Aft2p, a novel iron-regulated transcription activator that modulates, with Aft1p, intracellular iron use and resistance to oxidative stress in yeast. J. Biol. Chem. 276, 34221–34226 (2001).

    Article  CAS  Google Scholar 

  14. Ojeda, L. et al. Role of glutaredoxin-3 and glutaredoxin-4 in the iron regulation of the Aft1 transcriptional activator in Saccharomyces cerevisiae. J. Biol. Chem. 281, 17661–17669 (2006).

    Article  CAS  Google Scholar 

  15. Anderson, C.P., Shen, M., Eisenstein, R.S. & Leibold, E.A. Mammalian iron metabolism and its control by iron regulatory proteins. Biochim. Biophys. Acta 1823, 1468–1483 (2012).

    Article  CAS  Google Scholar 

  16. Li, H. et al. The yeast iron regulatory proteins Grx3/4 and Fra2 form heterodimeric complexes containing a [2Fe-2S] cluster with cysteinyl and histidyl ligation. Biochemistry 48, 9569–9581 (2009).

    Article  CAS  Google Scholar 

  17. Hoffmann, B. et al. The multidomain thioredoxin-monothiol glutaredoxins represent a distinct functional group. Antioxid. Redox Signal. 15, 19–30 (2011).

    Article  CAS  Google Scholar 

  18. Li, H. & Outten, C.E. Monothiol CGFS glutaredoxins and BolA-like proteins: [2Fe-2S] binding partners in iron homeostasis. Biochemistry 51, 4377–4389 (2012).

    Article  CAS  Google Scholar 

  19. Rual, J.F. et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature 437, 1173–1178 (2005).

    Article  CAS  Google Scholar 

  20. Banci, L. et al. Molecular view of an electron transfer process essential for iron-sulfur protein biogenesis. Proc. Natl. Acad. Sci. USA 110, 7136–7141 (2013).

    Article  CAS  Google Scholar 

  21. Netz, D.J. et al. Tah18 transfers electrons to Dre2 in cytosolic iron-sulfur protein biogenesis. Nat. Chem. Biol. 6, 758–765 (2010).

    Article  CAS  Google Scholar 

  22. Saito, Y. et al. PICOT is a molecule which binds to anamorsin. Biochem. Biophys. Res. Commun. 408, 329–333 (2011).

    Article  CAS  Google Scholar 

  23. Shibayama, H. et al. Identification of a cytokine-induced antiapoptotic molecule anamorsin essential for definitive hematopoiesis. J. Exp. Med. 199, 581–592 (2004).

    Article  CAS  Google Scholar 

  24. Tanimura, A. et al. The anti-apoptotic gene Anamorsin is essential for both autonomous and extrinsic regulation of murine fetal liver hematopoiesis. Exp. Hematol. 42, 410–422 (2014).

    Article  CAS  Google Scholar 

  25. Cha, H. et al. PICOT is a critical regulator of cardiac hypertrophy and cardiomyocyte contractility. J. Mol. Cell. Cardiol. 45, 796–803 (2008).

    Article  CAS  Google Scholar 

  26. Tarassov, K. et al. An in vivo map of the yeast protein interactome. Science 320, 1465–1470 (2008).

    Article  CAS  Google Scholar 

  27. Banci, L. et al. Anamorsin is a [2Fe-2S] cluster–containing substrate of the Mia40-dependent mitochondrial protein-trapping machinery. Chem. Biol. 18, 794–804 (2011).

    Article  CAS  Google Scholar 

  28. Li, H., Mapolelo, D.T., Randeniya, S., Johnson, M.K. & Outten, C.E. Human glutaredoxin 3 forms [2Fe-2S]-bridged complexes with human BolA2. Biochemistry 51, 1687–1696 (2012).

    Article  CAS  Google Scholar 

  29. Banci, L. et al. Human anamorsin binds [2Fe-2S] clusters with unique electronic properties. J. Biol. Inorg. Chem. 18, 883–893 (2013).

    Article  CAS  Google Scholar 

  30. Dominguez, C., Boelens, R. & Bonvin, A.M. HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J. Am. Chem. Soc. 125, 1731–1737 (2003).

    Article  CAS  Google Scholar 

  31. Zuiderweg, E.R. Mapping protein-protein interactions in solution by NMR spectroscopy. Biochemistry 41, 1–7 (2002).

    Article  CAS  Google Scholar 

  32. Ciofi-Baffoni, S., Gallo, A., Muzzioli, R. & Piccioli, M. The IR-15N-HSQC-AP experiment: a new tool for NMR spectroscopy of paramagnetic molecules. J. Biomol. NMR 58, 123–128 (2014).

    Article  CAS  Google Scholar 

  33. Oldfield, C.J. & Dunker, A.K. Intrinsically disordered proteins and intrinsically disordered protein regions. Annu. Rev. Biochem. 83, 553–584 (2014).

    Article  CAS  Google Scholar 

  34. Zhang, Y. et al. Conserved electron donor complex Dre2-Tah18 is required for ribonucleotide reductase metallocofactor assembly and DNA synthesis. Proc. Natl. Acad. Sci. USA 111, E1695–E1704 (2014).

    Article  CAS  Google Scholar 

  35. Zhang, Y. et al. Investigation of in vivo diferric tyrosyl radical formation in Saccharomyces cerevisiae Rnr2 protein: requirement of Rnr4 and contribution of Grx3/4 AND Dre2 proteins. J. Biol. Chem. 286, 41499–41509 (2011).

    Article  CAS  Google Scholar 

  36. Netz, D.J., Pierik, A.J., Stumpfig, M., Muhlenhoff, U. & Lill, R. The Cfd1-Nbp35 complex acts as a scaffold for iron-sulfur protein assembly in the yeast cytosol. Nat. Chem. Biol. 3, 278–286 (2007).

    Article  CAS  Google Scholar 

  37. Bradford, M.M. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    Article  CAS  Google Scholar 

  38. de Vries, S.J., van Dijk, M. & Bonvin, A.M. The HADDOCK web server for data-driven biomolecular docking. Nat. Protoc. 5, 883–897 (2010).

    Article  CAS  Google Scholar 

  39. Wassenaar, T.A. et al. WeNMR: structural biology on the grid. J. Grid Computing 10, 743–767 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Gallo (CERM) for assistance in recording the EPR spectra. This work was supported by Ente Cassa di Risparmio (Grant ID no. 2013/7101); the Ministero dell'Istruzione, dell'Università e della Ricerca (Grant ID number: CTN01_00177_962865); the European Integrated Structural Biology Infrastructure (INSTRUCT), which is part of the European Strategy Forum on Research Infrastructures; and national member subscriptions.

Author information

Authors and Affiliations

Authors

Contributions

The work plan was conceived and designed by L.B. and S.C.-B.; R.M. and K.G. produced protein constructs of anamorsin and GRX3; L.B. and S.C.-B. planned the experiments; J.W. and R.P. performed and analyzed NMR data; K.G., J.W. and R.M. performed and analyzed EPR and UV-vis experiments. The manuscript was drafted by L.B. and S.C.-B. and revised by all authors.

Corresponding authors

Correspondence to Lucia Banci or Simone Ciofi-Baffoni.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1 and 2 and Supplementary Figures 1–8. (PDF 5454 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banci, L., Ciofi-Baffoni, S., Gajda, K. et al. N-terminal domains mediate [2Fe-2S] cluster transfer from glutaredoxin-3 to anamorsin. Nat Chem Biol 11, 772–778 (2015). https://doi.org/10.1038/nchembio.1892

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1892

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing