Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

LAPTM4B facilitates late endosomal ceramide export to control cell death pathways

Abstract

Lysosome-associated protein transmembrane-4b (LAPTM4B) associates with poor prognosis in several cancers, but its physiological function is not well understood. Here we use novel ceramide probes to provide evidence that LAPTM4B interacts with ceramide and facilitates its removal from late endosomal organelles (LEs). This lowers LE ceramide in parallel with and independent of acid ceramidase–dependent catabolism. In LAPTM4B-silenced cells, LE sphingolipid accumulation is accompanied by lysosomal membrane destabilization. However, these cells resist ceramide-driven caspase-3 activation and apoptosis induced by chemotherapeutic agents or gene silencing. Conversely, LAPTM4B overexpression reduces LE ceramide and stabilizes lysosomes but sensitizes to drug-induced caspase-3 activation. Together, these data uncover a cellular ceramide export route from LEs and identify LAPTM4B as its regulator. By compartmentalizing ceramide, LAPTM4B controls key sphingolipid-mediated cell death mechanisms and emerges as a candidate for sphingolipid-targeting cancer therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: LAPTM4B deficiency causes ceramide accumulation.
Figure 2: LAPTM4B-depleted cells accumulate ceramide in LEs.
Figure 3: LAPTM4B overexpression suppresses ceramide accumulation.
Figure 4: LAPTM4B interacts with ceramide.
Figure 5: LE ceramide sequestration confers protection against chemotherapy-induced caspase-3 cleavage.
Figure 6: LAPTM4B affects lysosome-associated cell death pathways by regulating LE sphingolipid content.

Similar content being viewed by others

References

  1. Schulze, H. & Sandhoff, K. Sphingolipids and lysosomal pathologies. Biochim. Biophys. Acta 1841, 799–810 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Kolter, T. & Sandhoff, K. Lysosomal degradation of membrane lipids. FEBS Lett. 584, 1700–1712 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Lloyd-Evans, E. et al. Niemann-Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium. Nat. Med. 14, 1247–1255 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Speak, A.O. et al. Altered distribution and function of natural killer cells in murine and human Niemann-Pick disease type C1. Blood 123, 51–60 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Blom, T., Li, Z., Bittman, R., Somerharju, P. & Ikonen, E. Tracking sphingosine metabolism and transport in sphingolipidoses: NPC1 deficiency as a test case. Traffic 13, 1234–1243 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Hanada, K. et al. Molecular machinery for non-vesicular trafficking of ceramide. Nature 426, 803–809 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Truman, J.-P., García-Barros, M., Obeid, L.M. & Hannun, Y.A. Evolving concepts in cancer therapy through targeting sphingolipid metabolism. Biochim. Biophys. Acta 1841, 1174–1188 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Park, J.-W., Park, W.-J. & Futerman, A.H. Ceramide synthases as potential targets for therapeutic intervention in human diseases. Biochim. Biophys. Acta 1841, 671–681 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Henry, B., Möller, C., Dimanche-Boitrel, M.-T., Gulbins, E. & Becker, K.A. Targeting the ceramide system in cancer. Cancer Lett. 332, 286–294 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Ogretmen, B. & Hannun, Y.A. Biologically active sphingolipids in cancer pathogenesis and treatment. Nat. Rev. Cancer 4, 604–616 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Morad, S.A.F. & Cabot, M.C. Ceramide-orchestrated signalling in cancer cells. Nat. Rev. Cancer 13, 51–65 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Kallunki, T., Olsen, O.D. & Jäättelä, M. Cancer-associated lysosomal changes: friends or foes? Oncogene 32, 1995–2004 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Kirkegaard, T. et al. Hsp70 stabilizes lysosomes and reverts Niemann-Pick disease-associated lysosomal pathology. Nature 463, 549–553 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Petersen, N.H.T. et al. Transformation-associated changes in sphingolipid metabolism sensitize cells to lysosomal cell death induced by inhibitors of acid sphingomyelinase. Cancer Cell 24, 379–393 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Aits, S. & Jäättelä, M. Lysosomal cell death at a glance. J. Cell Sci. 126, 1905–1912 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Ellegaard, A.-M. et al. Sunitinib and SU11652 inhibit acid sphingomyelinase, destabilize lysosomes, and inhibit multidrug resistance. Mol. Cancer Ther. 12, 2018–2030 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Chipuk, J.E. et al. Sphingolipid metabolism cooperates with BAK and BAX to promote the mitochondrial pathway of apoptosis. Cell 148, 988–1000 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tafesse, F.G. et al. Sphingomyelin synthase-related protein SMSr is a suppressor of ceramide-induced mitochondrial apoptosis. J. Cell Sci. 127, 445–454 (2014).

    CAS  PubMed  Google Scholar 

  19. Lee, H. et al. Mitochondrial ceramide-rich macrodomains functionalize Bax upon irradiation. PLoS ONE 6, e19783 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Swanton, C. et al. Regulators of mitotic arrest and ceramide metabolism are determinants of sensitivity to paclitaxel and other chemotherapeutic drugs. Cancer Cell 11, 498–512 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Li, Y. et al. Lysosomal transmembrane protein LAPTM4B promotes autophagy and tolerance to metabolic stress in cancer cells. Cancer Res. 71, 7481–7489 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang, H. et al. Overexpression of LAPTM4B–35 promotes growth and metastasis of hepatocellular carcinoma in vitro and in vivo. Cancer Lett. 294, 236–244 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Li, Y. et al. Amplification of LAPTM4B and YWHAZ contributes to chemotherapy resistance and recurrence of breast cancer. Nat. Med. 16, 214–218 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Shao, G.-Z. et al. Molecular cloning and characterization of LAPTM4B, a novel gene upregulated in hepatocellular carcinoma. Oncogene 22, 5060–5069 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. De Ronde, J.J. et al. SERPINA6, BEX1, AGTR1, SLC26A3, and LAPTM4B are markers of resistance to neoadjuvant chemotherapy in HER2-negative breast cancer. Breast Cancer Res. Treat. 137, 213–223 (2013).

    Article  PubMed  CAS  Google Scholar 

  26. Hogue, D.L., Ellison, M.J., Young, J.D. & Cass, C.E. Identification of a novel membrane transporter associated with intracellular membranes by phenotypic complementation in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 271, 9801–9808 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Hogue, D.L., Kerby, L. & Ling, V. A mammalian lysosomal membrane protein confers multidrug resistance upon expression in Saccharomyces cerevisiae. J. Biol. Chem. 274, 12877–12882 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Cabrita, M.A., Hobman, T.C., Hogue, D.L., King, K.M. & Cass, C.E. Mouse transporter protein, a membrane protein that regulates cellular multidrug resistance, is localized to lysosomes. Cancer Res. 59, 4890–4897 (1999).

    CAS  PubMed  Google Scholar 

  29. Li, L. et al. LAPTM4B: a novel cancer-associated gene motivates multidrug resistance through efflux and activating PI3K/AKT signaling. Oncogene 29, 5785–5795 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Tan, X. et al. LAPTM4B is a PtdIns(4,5)P2 effector that regulates EGFR signaling, lysosomal sorting, and degradation. EMBO J. 34, 475–490 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tan, X., Thapa, N., Sun, Y. & Anderson, R.A.A. Kinase-Independent Role for EGF Receptor in Autophagy Initiation. Cell 160, 145–160 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vergarajauregui, S., Martina, J.A. & Puertollano, R. LAPTMs regulate lysosomal function and interact with mucolipin 1: new clues for understanding mucolipidosis type IV. J. Cell Sci. 124, 459–468 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pietiäinen, V. et al. NDRG1 functions in LDL receptor trafficking by regulating endosomal recycling and degradation. J. Cell Sci. 126, 3961–3971 (2013).

    PubMed  Google Scholar 

  34. Shen, D. et al. Lipid storage disorders block lysosomal trafficking by inhibiting a TRP channel and lysosomal calcium release. Nat. Commun. 3, 731 (2012).

    Article  PubMed  CAS  Google Scholar 

  35. Wegner, C.S. et al. Ultrastructural characterization of giant endosomes induced by GTPase-deficient Rab5. Histochem. Cell Biol. 133, 41–55 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Reynolds, C.P., Maurer, B.J. & Kolesnick, R.N. Ceramide synthesis and metabolism as a target for cancer therapy. Cancer Lett. 206, 169–180 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Ji, C. et al. Exogenous cell-permeable C6 ceramide sensitizes multiple cancer cell lines to Doxorubicin-induced apoptosis by promoting AMPK activation and mTORC1 inhibition. Oncogene 29, 6557–6568 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Bedia, C., Casas, J., Andrieu-Abadie, N., Fabriàs, G. & Levade, T. Acid ceramidase expression modulates the sensitivity of A375 melanoma cells to dacarbazine. J. Biol. Chem. 286, 28200–28209 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ullio, C. et al. Sphingosine mediates TNFα-induced lysosomal membrane permeabilization and ensuing programmed cell death in hepatoma cells. J. Lipid Res. 53, 1134–1143 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Heinrich, M. et al. Cathepsin D links TNF-induced acid sphingomyelinase to Bid-mediated caspase-9 and -3 activation. Cell Death Differ. 11, 550–563 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Heinrich, M. et al. Cathepsin D targeted by acid sphingomyelinase-derived ceramide. EMBO J. 18, 5252–5263 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ostenfeld, M.S. et al. Effective tumor cell death by sigma-2 receptor ligand siramesine involves lysosomal leakage and oxidative stress. Cancer Res. 65, 8975–8983 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Sandhoff, K. My journey into the world of sphingolipids and sphingolipidoses. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci. 88, 554–582 (2012).

    Article  CAS  Google Scholar 

  44. Trajkovic, K. et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319, 1244–1247 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Contreras, F.-X. et al. Molecular recognition of a single sphingolipid species by a protein’s transmembrane domain. Nature 481, 525–529 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Björkholm, P. et al. Identification of novel sphingolipid-binding motifs in mammalian membrane proteins. Biochim. Biophys. Acta 1838, 2066–2070 (2014).

    Article  PubMed  CAS  Google Scholar 

  47. Juul, N. et al. Assessment of an RNA interference screen-derived mitotic and ceramide pathway metagene as a predictor of response to neoadjuvant paclitaxel for primary triple-negative breast cancer: a retrospective analysis of five clinical trials. Lancet Oncol. 11, 358–365 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Lee, A.J.X. et al. CERT depletion predicts chemotherapy benefit and mediates cytotoxic and polyploid-specific cancer cell death through autophagy induction. J. Pathol. 226, 482–494 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Bandhuvula, P., Li, Z., Bittman, R. & Saba, J.D. Sphingosine 1-phosphate lyase enzyme assay using a BODIPY-labeled substrate. Biochem. Biophys. Res. Commun. 380, 366–370 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Loizides-Mangold, U., David, F.P.A., Nesatyy, V.J., Kinoshita, T. & Riezman, H. Glycosylphosphatidylinositol anchors regulate glycosphingolipid levels. J. Lipid Res. 53, 1522–1534 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sullards, M.C. & Merrill, A.H. Analysis of sphingosine 1-phosphate, ceramides, and other bioactive sphingolipids by high-performance liquid chromatography-tandem mass spectrometry. Sci. STKE 2001, pl1 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank K. Sandhoff for helpful comments on the manuscript; A. Uro and D.J. Baek for technical support; S. Hautaniemi, R. Louhimo and S. Karinen for help with bioinformatics and the Biomedicum imaging unit for help with microscopy. This study was supported by Academy of Finland grants 273533 and 266092 (T.B.), 131489, 263841 and 272130 (E.I.), the Liv och Hälsa Foundation (T.B. and N.B.), the University of Helsinki Research Fund Grant (T.B.), the Ruth and Nils-Erik Stenbäck Foundation (T.B.), the Finnish Medical Foundation (E.I. and R.B.), the Sigrid Juselius Foundation (E.I.), the Magnus Ehrnrooth Foundation (N.B.), the Perklén Foundation (N.B.), the Swiss National Science Foundation (H.R.), the NCCR Chemical Biology (H.R.) and SystemsX.ch (H.R.).

Author information

Authors and Affiliations

Authors

Contributions

E.I. and T.B. conceived the project, designed and analysed experiments. T.B., S.L. and A.D. designed, carried out and analyzed experiments. N.B. carried out and analysed the electron microscopy experiments. R.B. conceived and designed the synthesis of the fluorescent ceramide probes, and Y.A.K. carried out the synthesis. H.R. planned and U.L.-M. carried out the lipid mass spectrometry and analysed the data. E.I. and T.B. wrote the manuscript; all authors read and commented on it.

Corresponding authors

Correspondence to Tomas Blom or Elina Ikonen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–23, Supplementary Tables 1 and 2 and Supplementary Note (PDF 2772 kb)

Movement of LAPTM4B-Cherry and ceramide-BODIPY positive organelles along the ER

Stable A431 cells overexpressing LAPTM4B-Cherry were transfected with BFP-KDEL cDNA to label the ER. Starting at 24 h post-transfection, the cells were serum starved for 16 h. Cells were then pulsed with ceramide-BODIPY/LDL for 1 h, chased for 30 min in serum free medium and imaged by confocal microscopy. The image capture rate was ~0.4fps. See also Supplementary Figure 18. (MOV 10127 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blom, T., Li, S., Dichlberger, A. et al. LAPTM4B facilitates late endosomal ceramide export to control cell death pathways. Nat Chem Biol 11, 799–806 (2015). https://doi.org/10.1038/nchembio.1889

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1889

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer